Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 341(1): 12-23, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16061266

ABSTRACT

Entry of HIV and SIV into susceptible cells is mediated by CD4 and chemokine receptors, which act as coreceptors. To study cell entry of SIV, we constructed a cell line, xKLuSIV, derived from non-susceptible human K562 cells, that express the firefly luciferase reporter gene under control of a minimal SIV long terminal repeat (LTR). Using these susceptible cells, we studied the entry of a well-characterized molecularly cloned macrophage-tropic SIV. xKLuSIV cells that express rhesus macaque CD4 and/or the rhesus chemokine receptor CCR5 are susceptible to infection with the macrophage-tropic, neurovirulent strain SIV/17E-Fr, but only xKLuSIV cells expressing both CCR5 and CD4 were susceptible to infection by the macrophage-tropic, non-neurovirulent strain SIV/17E-Cl. CCR5-dependent, CD4-independent infection by SIV/17E-Fr was abrogated by pre-incubation of the cells with AOP-RANTES, a ligand for CCR5. In addition to viral entry occurring by a CD4-independent mechanism, neutralization of SIV/17E-Fr with rhesus mAbs from 3 different neutralization groups blocked entry into x KLuSIV cells by both CD4-dependent and -independent mechanisms. Triggering the env glycoprotein of SIV-17 EFr with soluble CD4 had no significant effect in infectivity, but triggering of the same glycoprotein of SIV/17E-Cl allowed it to enter cells in a CD4-independent fashion. Using mutant molecular clones, we studied the determinants for CD4 independence, all of which are confined to the env gene. We report here that truncation of the TM at amino acid 764 and changing a single amino acid (R751G) in the SIV envelope transmembrane protein (TM) conferred the observed CD4-independent phenotype. Our data suggest that the envelope from the neurovirulent SIV/17E-Fr interacts with CCR5 in a CD4-independent manner, and changes in the TM protein of this virus are important components that contribute to neurovirulence in SIV.


Subject(s)
Receptors, CCR5/physiology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Amino Acid Substitution , Animals , Antibodies, Viral , Antigens, Viral/genetics , CD4 Antigens/physiology , Cell Line , Chemokine CCL5/analogs & derivatives , Chemokine CCL5/pharmacology , Epitope Mapping , Genes, Viral , Humans , K562 Cells , Macaca mulatta , Membrane Glycoproteins/physiology , Neutralization Tests , Retroviridae Proteins/genetics , Retroviridae Proteins/physiology , Sequence Deletion , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Solubility , Viral Envelope Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...