Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 42(9): 2771-2788, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31900823

ABSTRACT

The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.


Subject(s)
Coal Ash/chemistry , Metals/analysis , Waste Management/methods , Carbon Dioxide/chemistry , Chemical Fractionation , Coal Ash/analysis , Metals/chemistry , Soil/chemistry , Solubility , South Africa , Spectrometry, X-Ray Emission , Waste Disposal Facilities , Weather , X-Ray Diffraction
2.
Environ Technol ; 37(5): 603-12, 2016.
Article in English | MEDLINE | ID: mdl-26208531

ABSTRACT

In the present study, nanocomposite of cryptocrystalline magnesite-bentonite clay was used as a novel technology for removal of phosphates from municipal effluents. Vibratory ball miller was used for fabrication of the composite. Removal of phosphate from an aqueous solution was achieved using batch experimental procedures. The parameters optimized include time, dosage, concentration and pH. An optimization experiment revealed that 30 mins of shaking time, 1 g of composite, 100 mg L(-1) of phosphate, 1: 100 S/L ratios, 250 rpm, pH 10 and room temperature are the optimum conditions for removal of phosphate. Adsorption data fitted well to the Langmuir adsorption isotherm than Freundlich adsorption isotherms, thus confirming monolayer adsorption. Adsorption kinetics data fitted well to pseudo second-order kinetics than first-order kinetics, thus suggesting chemisorption. This comparative study showed better adsorption of the composite as compared to conventional methods of phosphate removal. The results suggest that the fabricated composite has the potential for remediation of phosphate-contaminated waters.


Subject(s)
Bentonite/chemistry , Magnesium/chemistry , Phosphates/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/chemistry , Adsorption
3.
J Environ Manage ; 102: 96-107, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22446137

ABSTRACT

Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not encapsulate the salt or act as a sustainable salt sink due to over time reduction in pore water pH. The leaching behaviours of Ca, Mg, Na+, K+, Se, Cr and Sr are controlled by the pH of the leachant in both fresh and unsaturated weathered ash. Other trace metals like As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. The precipitation of minor quantities of secondary mineral phases in the unsaturated weathered ash has significant effects on the acid susceptibility and leaching patterns of chemical species in comparison with fresh ash. The unsaturated weathered ash had lower buffering capacity at neutral pH (7.94-8.00) compared to fresh (unweathered) ash. This may be due to the initial high leaching/flushing of soluble basic buffering constituents from fly ash after disposal. The overall results of the acid susceptibility tests suggest that both fresh ash and unsaturated weathered ash would release a large percentage of their chemical species when in contact with slightly acidified rain. Proper management of ash dumps is therefore essential to safeguard the environmental risks of water percolation in different fly ashes behaviour.


Subject(s)
Coal Ash/chemistry , Environmental Restoration and Remediation/methods , Recycling , Hydrogen-Ion Concentration , Rain , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...