Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 2022 May 18.
Article in English | MEDLINE | ID: mdl-35584615

ABSTRACT

Transition metal dichalcogenides (TMDCs) are versatile layered materials with potential applications ranging from optoelectronic devices to water splitting. Top-down fabrication methods such as exfoliation are not practical for a large-scale production of high-quality devices: a bottom-up approach such as sputtering, a low-temperature deposition method, is more suitable. However, due to its anisotropic nature, the growth mechanism of molybdenum disulfide (MoS2) via sputtering is complex and remains to be investigated in detail. In this paper, we study the growth of MoS2 films co-deposited by using a sulfur (S) hot-lip cell and a molybdenum (Mo) sputtering target via reactive sputtering. The impact of S partial pressure on the structure and morphology of MoS2films was systematically characterized, and it was observed that the growth is dominated by vertically-oriented sheets with horizontal branches, resulting in a tree-like structure. The growth front of the structures is ascribed to the anisotropic incorporation of adatoms with regards to the orientation of MoS2.

2.
Sci Technol Adv Mater ; 19(1): 336-369, 2018.
Article in English | MEDLINE | ID: mdl-29707072

ABSTRACT

Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

SELECTION OF CITATIONS
SEARCH DETAIL
...