Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLOS Glob Public Health ; 3(12): e0002247, 2023.
Article in English | MEDLINE | ID: mdl-38055687

ABSTRACT

Antimicrobial resistance (AMR) is a major global public health concern, particularly in low- and middle-income countries, which experience the highest burden of AMR. Critical to combatting AMR is ensuring there are effective, accessible diagnostic networks in place to diagnose, monitor and prevent AMR, but many low- and middle-income countries lack such networks. Consequently, there is substantial need for approaches that can inform the design of efficient AMR laboratory networks and sample referral systems in lower-resource countries. Diagnostic network optimization (DNO) is a geospatial network analytics approach to plan diagnostic networks and ensure greatest access to and coverage of services, while maximizing the overall efficiency of the system. In this intervention, DNO was applied to strengthen bacteriology and AMR surveillance network design in Kenya and Nepal for human and animal health, by informing linkages between health facilities and bacteriology testing services and sample referral routes between farms, health facilities and laboratories. Data collected from the target settings in each country were entered into the open-access DNO tool OptiDx, to generate baseline scenarios, which depicted the current state of AMR laboratory networks and sample referral systems in the countries. Subsequently, baselines were adjusted to evaluate changing factors such as samples flows, transport frequency, transport costs, and service distances. Country stakeholders then compared resulting future scenarios to identify the most feasible solution for their context. The DNO analyses enabled a wealth of insights that will facilitate strengthening of AMR laboratory and surveillance networks in both countries. Overall, the project highlights the benefits of using a data-driven approach for designing efficient diagnostic networks, to ensure better health resource allocation while maximizing the impact and equity of health interventions. Given the critical need to strengthen AMR laboratory and surveillance capacity, DNO should be considered an integral part of diagnostic strategic planning in the future.

2.
J Public Health Afr ; 14(6): 2309, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37680705

ABSTRACT

In response to the largest recorded monkeypox virus outbreak outside of endemic Central and Western Africa, the East African Community (EAC), in cooperation with the Bernhard-Nocht- Institute for Tropical Medicine, coordinated an emergency monkeypox diagnostic training for the East African Region. As of June 2022, the Democratic Republic of Congo reported a steady increase of suspected monkeypox cases, increasing the risk of spill-over into the remaining six EAC Partner States. Within the existing EAC Mobile Laboratories project, laboratory experts of the National Public Health Laboratories of the remaining six EAC Partner States (Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan) participated in the workshop and were trained in the reception of suspect samples, DNA extraction and diagnosis using real-time polymerase chain reaction (RT-PCR). The EAC region is now equipped with the tools to prepare and rapidly respond to any emerging monkeypox outbreak.

3.
Front Microbiol ; 14: 1142622, 2023.
Article in English | MEDLINE | ID: mdl-37593544

ABSTRACT

Background: Antimicrobial resistance (AMR) is an increasingly severe threat to global public health that requires action across different sectors. Selection of appropriate antimicrobials is an urgent challenge due to the emergence of drug resistance. In 2017, Kenya developed an AMR policy and National Action Plan to drive prevention and containment of AMR. A priority activity under AMR surveillance strategic objective was to develop a national AMR training curriculum for in-service healthcare workers. In this paper we discuss the development process, gains achieved through implementation across the country and lessons learned. Methods: An initial stakeholders' forum was convened to brainstorm on the process for developing the curriculum and some issues deliberated upon include the design approach, development roadmap, curriculum outline and scope, delivery, and evaluation methodologies. A dedicated team of subject matter experts (SMEs), drawn from the project and government ministries, compiled the initial draft of the curriculum and later the training materials. A series of other stakeholders' meetings were convened to review these materials. The National Antimicrobial Stewardship Interagency Committee (NASIC) of the MOH in Kenya identified a team of experts from academia, research, and government to work with the SMEs in reviewing and providing valuable inputs to the curriculum. Additionally, principles of adult learning and a One Health approach for development were considered as AMR has drivers and impacts across sectors. A validation workshop was held to finalize the documents with a formal launch conducted during the World Antibiotics Awareness Week of 2020. Results: A multisectoral AMR surveillance training curriculum and facilitator and trainee manuals were developed and endorsed by MOH and Ministry of Agriculture, Livestock, Fisheries and Cooperatives within one year. Over 500 healthcare workers in 19 counties were trained, with overwhelming adoption by other stakeholders in Kenya and beyond. Conclusion: This curriculum was developed to standardize training for AMR detection and surveillance. The central role played by the MOH ensured expeditious development and roll-out of this curriculum. The in-service curriculum, now available on an e-learning platform, provides a ready opportunity to build capacity of healthcare professionals. Additional resources are needed to standardize and scale these efforts to reach all healthcare workers.

4.
Afr J Lab Med ; 11(1): 1594, 2022.
Article in English | MEDLINE | ID: mdl-36091353

ABSTRACT

Background: Antimicrobial resistance (AMR) is becoming a critical public health issue globally. The World Health Organization launched the Global Antimicrobial Resistance and Use Surveillance System (GLASS) to support the strengthening of the AMR evidence base. Objective: The article describes the evolution of national AMR surveillance systems and AMR data reporting of countries in the African continent between 2017 and 2019, and the constraints, perceived impact and value of the participation in GLASS. Methods: Data on implementation of national surveillance systems and AMR rates were submitted to GLASS between 2017 and 2019 and summarised though descriptive statistics. The information on constraints and perceived impact and value in GLASS participation was collected though a set of questionnaires. Results: Between 2017 and 2019, Egypt, Ethiopia, Madagascar, Malawi, Mali, Mozambique, Nigeria, South Africa, Sudan, Tunisia, Uganda and Zambia submitted data to GLASS. The main constraints listed are linked to scarce laboratory capacity and capability, limited staffing, budget issues, and data management. Moreover, while the data are not yet nationally representative, high resistance rates were reported to commonly-used antibiotics, as the emerging resistance to last treatment options. Conclusion: Despite the limitations, more and more countries in the African continent are working towards reaching a status that will enable them to report AMR data in a complete and systematic manner. Future improvements involve the expansion of routine surveillance capacity for several countries and the implementation of surveys that allow to effectively define the magnitude of AMR in the continent.

5.
MMWR Morb Mortal Wkly Rep ; 69(18): 540-544, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32379727

ABSTRACT

Respiratory pathogens, such as novel influenza A viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are of particular concern because of their high transmissibility and history of global spread (1). Clusters of severe respiratory disease are challenging to investigate, especially in resource-limited settings, and disease etiology often is not well understood. In 2014, endorsed by the Group of Seven (G7),* the Global Health Security Agenda (GHSA) was established to help build country capacity to prevent, detect, and respond to infectious disease threats.† GHSA is a multinational, multisectoral collaboration to support countries towards full implementation of the World Health Organization's International Health Regulations (IHR).§ Initially, 11 technical areas for collaborator participation were identified to meet GHSA goals. CDC developed the Detection and Response to Respiratory Events (DaRRE) strategy in 2014 to enhance country capacity to identify and control respiratory disease outbreaks. DaRRE initiatives support the four of 11 GHSA technical areas that CDC focuses on: surveillance, laboratory capacity, emergency operations, and workforce development.¶ In 2016, Kenya was selected to pilot DaRRE because of its existing respiratory disease surveillance and laboratory platforms and well-developed Field Epidemiology and Laboratory Training Program (FELTP) (2). During 2016-2020, Kenya's DaRRE partners (CDC, the Kenya Ministry of Health [MoH], and Kenya's county public health officials) conceptualized, planned, and implemented key components of DaRRE. Activities were selected based on existing capacity and determined by the Kenya MoH and included 1) expansion of severe acute respiratory illness (SARI) surveillance sites; 2) piloting of community event-based surveillance; 3) expansion of laboratory diagnostic capacity; 4) training of public health practitioners in detection, investigation, and response to respiratory threats; and 5) improvement of response capacity by the national emergency operations center (EOC). Progress on DaRRE activity implementation was assessed throughout the process. This pilot in Kenya demonstrated that DaRRE can support IHR requirements and can capitalize on a country's existing resources by tailoring tools to improve public health preparedness based on countries' needs.


Subject(s)
Disease Outbreaks/prevention & control , Mass Screening/organization & administration , Public Health Surveillance , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/prevention & control , Capacity Building , Humans , Kenya/epidemiology , Pilot Projects , Respiratory Tract Diseases/epidemiology
6.
Afr J Lab Med ; 2(1): 45, 2013.
Article in English | MEDLINE | ID: mdl-29043160

ABSTRACT

Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Rates of carriage are highest in infants and the elderly. The objectives of this study were to determine the rate of nasopharyngeal colonization by S. pneumoniae, and to describe the antibiotic resistant patterns and the serotypes of the carried isolates. A cross-sectional study design was used. Nasopharyngeal swabs were collected from 315 children in the months of October and November 2010 and processed to isolate S. pneumoniae. The isolates were serotyped by the Quellung reaction and their antibiotic susceptibilities assessed by the disc diffusion method. The overall nasopharyngeal carriage rate for S. pneumoniae was 17%. Seventeen serotypes were detected amongst 55 strains analysed: 6A, 23F, 19F, 13, 6B, 14A, 20, 7C, 1, 15B, 35B, 19A, 11A, 34, 5, 3 and 23A. Susceptibility testing revealed that nearly all (98%) were resistant to cotrimoxazole, 9% were resistant to penicillin and 7% to cefotaxime. Resistance to chloramphenicol and erythromycin was 2% and 4%, respectively. All isolates were fully sensitive to tetracycline. High levels of cotrimoxazole resistance and some resistance to other antimicrobial agents commonly used in Thika District Hospital shows that there is need to revise antimicrobial policy in this region in the treatment of invasive pneumococcal infections. The frequent serotypes found in this study have previously been associated with pneumococcal infections in children. Several of these serotypes are included in the ten-valent vaccine and therefore use of this vaccine will help reduce pneumococcal infections in Thika.

SELECTION OF CITATIONS
SEARCH DETAIL
...