Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(4): e0211923, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38497644

ABSTRACT

Eye infections from bacterial contamination of bulk-refillable liquid soap dispensers and artificial tear eye drops continue to occur, resulting in adverse health outcomes that include impaired vision or eye enucleation. Pseudomonas aeruginosa (P. aeruginosa), a common cause of eye infections, can grow in eye drop containers and refillable soap dispensers to high numbers. To assess the risk of eye infection, a quantitative microbial risk assessment for P. aeruginosa was conducted to predict the probability of an eye infection for two potential exposure scenarios: (i) individuals using bacteria-contaminated eye drops and (ii) contact lens wearers washing their hands with bacteria-contaminated liquid soap prior to placing the lens. The median risk of an eye infection using contaminated eye drops and hand soap for both single and multiple exposure events (per day) ranged from 10-1 to 10-4, with contaminated eye drops having the greater risk. The concentration of P. aeruginosa was identified as the parameter contributing the greatest variance on eye infection risk; therefore, the prevalence and level of bacterial contamination of the product would have the greatest influence on health risk. Using eye drops in a single-use container or with preservatives can mitigate bacterial growth, and using non-refillable soap dispensers is recommended to reduce contamination of hand soap. Given the opportunistic nature of P. aeruginosa and its ability to thrive in unique environments, additional safeguards to mitigate bacterial growth and exposure are warranted.IMPORTANCEPseudomonas aeruginosa (P. aeruginosa) is a pathogen that can persist in a variety of unusual environments and continues to pose a significant risk for public health. This quantitative microbial risk assessment (QMRA) estimates the potential human health risks, specifically for eye infections, associated with exposure to P. aeruginosa in bacteria-contaminated artificial tear eye drops and hand soap. This study applies the risk assessment framework of QMRA to evaluate eye infection risks through both consumer products. The study examines the prevalence of this pathogen in eye drops and soap, as well as the critical need to implement measures that will mitigate bacterial exposure (e.g., single-use soap dispensers and eye drops with preservatives). Additionally, limitations and challenges are discussed, including the need to incorporate data regarding consumer practices, which may improve exposure assessments and health risk estimates.


Subject(s)
Eye Infections , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Soaps , Lubricant Eye Drops , Bacteria , Pseudomonas Infections/epidemiology , Pseudomonas Infections/prevention & control , Hand Disinfection/methods
2.
Int J Environ Health Res ; 34(1): 564-574, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36595614

ABSTRACT

The border city of El Paso, Texas, and its water utility, El Paso Water, initiated a SARS-CoV-2 wastewater monitoring program to assess virus trends and the appropriateness of a wastewater monitoring program for the community. Nearly weekly sample collection at four wastewater treatment facilities (WWTFs), serving distinct regions of the city, was analyzed for SARS-CoV-2 genes using the CDC 2019-Novel coronavirus Real-Time RT-PCR diagnostic panel. Virus concentrations ranged from 86.7 to 268,000 gc/L, varying across time and at each WWTF. The lag time between virus concentrations in wastewater and reported COVID-19 case rates (per 100,00 population) ranged from 4-24 days for the four WWTFs, with the strongest trend occurring from November 2021 - June 2022. This study is an assessment of the utility of a geographically refined SARS-CoV-2 wastewater monitoring program to supplement public health efforts that will manage the virus as it becomes endemic in El Paso.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Texas/epidemiology , Water
3.
Lancet Reg Health Am ; 28: 100639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076410

ABSTRACT

Background: Tracking infectious diseases at the community level is challenging due to asymptomatic infections and the logistical complexities of mass surveillance. Wastewater surveillance has emerged as a valuable tool for monitoring infectious disease agents including SARS-CoV-2 and Mpox virus. However, detecting the Mpox virus in wastewater is particularly challenging due to its relatively low prevalence in the community. In this study, we aim to characterize three molecular assays for detecting and tracking the Mpox virus in wastewater from El Paso, Texas, during February and March 2023. Methods: In this study, a combined approach utilizing three real-time PCR assays targeting the C22L, F3L, and F8L genes and sequencing was employed to detect and track the Mpox virus in wastewater samples. The samples were collected from four sewersheds in the City of El Paso, Texas, during February and March 2023. Wastewater data was compared with reported clinical case data in the city. Findings: Mpox virus DNA was detected in wastewater from all the four sewersheds, whereas only one Mpox case was reported during the sampling period. Positive signals were still observed in multiple sewersheds after the Mpox case was identified. Higher viral concentrations were found in the pellet than in the supernatant of wastewater. Notably, an increasing trend in viral concentration was observed approximately 1-2 weeks before the reporting of the Mpox case. Further sequencing and epidemiological analysis provided supporting evidence for unreported Mpox infections in the city. Interpretation: Our analysis suggests that the Mpox cases in the community is underestimated. The findings emphasize the value of wastewater surveillance as a public health tool for monitoring infectious diseases even in low-prevalence areas, and the need for heightened vigilance to mitigate the spread of Mpox disease for safeguarding global health. Funding: Center of Infectious Diseases at UTHealth, the University of Texas System, and the Texas Epidemic Public Health Institute. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of these funding organizations.

4.
Article in English | MEDLINE | ID: mdl-37835103

ABSTRACT

Aquifer storage and recovery (ASR) can augment water supplies and hydrologic flows under varying climatic conditions. However, imposing drinking water regulations on ASR practices, including pre-treatment before injection into the aquifer, remains arguable. Microbial inactivation data-Escherichia coli, Pseudomonas aeruginosa, poliovirus type 1 and Cryptosporidium parvum-were used in a human health risk assessment to identify how the storage time of recharged water in the Floridan Aquifer enhances pathogen inactivation, thereby mitigating the human health risks associated with ingestion. We used a quantitative microbial risk assessment to evaluate the risks for a gastrointestinal infection (GI) and the associated disability-adjusted life years (DALYs) per person per year. The risk of developing a GI infection for drinking water no longer exceeded the suggested annual risk threshold (1 × 10-4) by days 31, 1, 52 and 80 for each pathogen, respectively. DALYs per person per year no longer exceeded the World Health Organization threshold (1 × 10-6) by days 27, <1, 43 and 72. In summary, storage time in the aquifer yields a significant reduction in health risk. The findings emphasize that considering microbial inactivation, caused by storage time and geochemical conditions within ASR storage zones, is critical for recharge water treatment processes.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Drinking Water , Groundwater , Humans , Florida , Water Supply , Groundwater/chemistry , Risk Assessment
5.
Front Microbiol ; 14: 1210192, 2023.
Article in English | MEDLINE | ID: mdl-37901823

ABSTRACT

Quantitative microbial risk assessment (QMRA) can be used to evaluate health risks associated with recreational beach use. This study developed a site-specific risk assessment using a novel approach that combined quantitative PCR-based measurement of microbial source tracking (MST) genetic markers (human, dog, and gull fecal bacteria) with a QMRA analysis of potential pathogen risk. Water samples (n = 24) from two recreational beaches were collected and analyzed for MST markers as part of a broader Beach Exposure And Child Health Study that examined child behavior interactions with the beach environment. We report here the measurements of fecal bacteria MST markers in the environmental DNA extracts of those samples and a QMRA analysis of potential health risks utilizing the results from the MST measurements in the water samples. Human-specific Bacteroides was enumerated by the HF183 Taqman qPCR assay, gull-specific Catellicoccus was enumerated by the Gull2 qPCR assay, and dog-specific Bacteroides was enumerated by the DogBact qPCR assay. Derived reference pathogen doses, calculated from the MST marker concentrations detected in recreational waters, were used to estimate the risk of gastrointestinal illness for both children and adults. Dose-response equations were used to estimate the probability of the risk of infection (Pinf) per a swimming exposure event. Based on the QMRA simulations presented in this study, the GI risk from swimming or playing in water containing a mixture of human and non-human fecal sources appear to be primarily driven by the human fecal source. However, the estimated median GI health risk for both beaches never exceeded the U.S. EPA risk threshold of 32 illnesses per 1,000 recreation events. Our research suggests that utilizing QMRA together with MST can further extend our understanding of potential recreational bather risk by identifying the source contributing the greatest risk in a particular location, therefore informing beach management responses and decision-making.

6.
Nat Commun ; 14(1): 6878, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898601

ABSTRACT

Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health.


Subject(s)
Poliovirus , Virome , Humans , Virome/genetics , Wastewater , Cities , Disease Outbreaks , SARS-CoV-2/genetics
7.
Water Res ; 243: 120372, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494742

ABSTRACT

Wastewater surveillance has proved to be a valuable tool to track the COVID-19 pandemic. However, most studies using wastewater surveillance data revolve around establishing correlations and lead time relative to reported case data. In this perspective, we advocate for the integration of wastewater surveillance data with dynamic within-host and between-host models to better understand, monitor, and predict viral disease outbreaks. Dynamic models overcome emblematic difficulties of using wastewater surveillance data such as establishing the temporal viral shedding profile. Complementarily, wastewater surveillance data bypasses the issues of time lag and underreporting in clinical case report data, thus enhancing the utility and applicability of dynamic models. The integration of wastewater surveillance data with dynamic models can enhance real-time tracking and prevalence estimation, forecast viral transmission and intervention effectiveness, and most importantly, provide a mechanistic understanding of infectious disease dynamics and the driving factors. Dynamic modeling of wastewater surveillance data will advance the development of a predictive and responsive monitoring system to improve pandemic preparedness and population health.


Subject(s)
COVID-19 , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring , Disease Outbreaks , RNA, Viral
8.
medRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333173

ABSTRACT

Wastewater surveillance has been widely used to track and estimate SARS-CoV-2 incidence. While both infectious and recovered individuals shed virus into wastewater, epidemiological inferences using wastewater often only consider the viral contribution from the former group. Yet, the persistent shedding in the latter group could confound wastewater-based epidemiological inference, especially during the late stage of an outbreak when the recovered population outnumbers the infectious population. To determine the impact of recovered individuals' viral shedding on the utility of wastewater surveillance, we develop a quantitative framework that incorporates population-level viral shedding dynamics, measured viral RNA in wastewater, and an epidemic dynamic model. We find that the viral shedding from the recovered population can become higher than the infectious population after the transmission peak, which leads to a decrease in the correlation between wastewater viral RNA and case report data. Furthermore, the inclusion of recovered individuals' viral shedding into the model predicts earlier transmission dynamics and slower decreasing trends in wastewater viral RNA. The prolonged viral shedding also induces a potential delay in the detection of new variants due to the time needed to generate enough new cases for a significant viral signal in an environment dominated by virus shed by the recovered population. This effect is most prominent toward the end of an outbreak and is greatly affected by both the recovered individuals' shedding rate and shedding duration. Our results suggest that the inclusion of viral shedding from non-infectious recovered individuals into wastewater surveillance research is important for precision epidemiology.

9.
J Med Virol ; 95(1): e28395, 2023 01.
Article in English | MEDLINE | ID: mdl-36504122

ABSTRACT

Rapid and accurate diagnosis of infections is fundamental to containment of disease. Several monkeypox virus (MPV) real-time diagnostic assays have been recommended by the CDC; however, the specificity of the primers and probes in these assays for the ongoing MPV outbreak has not been investigated. We analyzed the primer and probe sequences present in the CDC recommended MPV generic real-time PCR assay by aligning those sequences against 1730 MPV complete genomes reported in 2022 worldwide. Sequence mismatches were found in 99.08% and 97.46% of genomes for the MPV generic forward and reverse primers, respectively. Mismatch-corrected primers were synthetized and compared to the generic assay for MPV detection. Results showed that the two primer-template mismatches resulted in a ~11-fold underestimation of initial template DNA in the reaction and 4-fold increase in the 95% LOD. We further evaluated the specificity of seven other real-time PCR assays used for MPV and orthopoxvirus (OPV) detection and identified two assays with the highest matching score (>99.6%) to the global MPV genome database in 2022. Genetic variations in the primer-probe regions across MPV genomes could indicate the temporal and spatial emergence pattern of monkeypox disease. Our results show that the current MPV real-time generic assay may not be optimal to accurately detect MPV, and the mismatch-corrected assay with full complementarity between primers and current MPV genomes could provide a more sensitive and accurate detection of MPV.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Real-Time Polymerase Chain Reaction/methods , DNA Primers/genetics , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Disease Outbreaks , Sensitivity and Specificity
10.
Sci Total Environ ; 857(Pt 1): 159326, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36220466

ABSTRACT

Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains understudied and limits its application. In this study, we have established a quantitative framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral shedding course into exposed, infectious, and recovery phases as an analogy to the compartments in a population-level SEIR model. We demonstrated that the effect of temperature on viral losses in the sewer can be straightforwardly incorporated in our framework. Using WBS data from the second wave of the pandemic (Oct 02, 2020-Jan 25, 2021) in the Greater Boston area, we showed that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in wastewater and predicts the true number of cases peaked earlier and higher than the number of reported cases by 6-16 days and 8.3-10.2 folds (R = 0.93). This work showcases a simple yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the application of wastewater surveillance of infectious diseases for epidemiological inference and inform public health actions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Prevalence , Wastewater-Based Epidemiological Monitoring
11.
medRxiv ; 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35898336

ABSTRACT

Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains understudied and limits its application. In this study, we have established a quantitative framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral shedding course into exposed, infectious, and recovery phases as an analogy to the compartments in population-level SEIR model. We demonstrated that the temperature effect on viral losses in the sewer can be straightforwardly incorporated in our framework. Using WBS data from the second wave of the pandemic (Oct 02, 2020 â€" Jan 25, 2021) in the Great Boston area, we showed that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in wastewater and predicts the true number of cases peaked earlier and higher than the number of reported cases by 16 days and 8.6 folds ( R = 0.93), respectively. This work showcases a simple, yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the application of wastewater surveillance of infectious diseases for epidemiological inference and inform public health actions.

12.
Microb Risk Anal ; 9: 22-32, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30525084

ABSTRACT

The use of aquaculture is increasing to meet the growing global demand for seafood. However, the use of aquaculture for seafood production incurs potential human health risks, especially from enteric bacteria such as Salmonella spp. Salmonella spp. was the most frequently reported cause of outbreaks associated with crustaceans from 1998 to 2004. Among crustacean species, shrimp are the most economically important, internationally traded seafood commodity, and the most commonly aquaculture-raised seafood imported to the United States. To inform safe aquaculture practices, a quantitative microbial risk assessment (QMRA) was performed for wastewater-fed aquaculture, incorporating stochastic variability in shrimp growth, processing, and consumer preparation. Several scenarios including gamma irradiation, proper cooking, and improper cooking were considered in order to examine the relative importance of these practices in terms of their impact on risk. Median annual infection risks for all scenarios considered were below 10-4, however 95th percentile risks were above 10-4 annual probability of infection and 10-6 DALY per person per year for scenarios with improper cooking and lack of gamma irradiation. The greatest difference between microbiological risks for the scenarios tested was observed when comparing proper vs. improper cooking (5 to 6 orders of magnitude) and gamma irradiation (4 to 5 orders of magnitude) compared to (up to less than 1 order of magnitude) for peeling and deveining vs. peeling only. The findings from this research suggest that restriction of Salmonella spp. to low levels (median 5 to 30 per L aquaculture pond water) may be necessary for scenarios in which proper downstream food handling and processing cannot be guaranteed.

SELECTION OF CITATIONS
SEARCH DETAIL
...