Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Heart Rhythm ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38842964

ABSTRACT

BACKGROUND: Energy drinks potentially can trigger life-threatening cardiac arrhythmias. It has been postulated that the highly stimulating and unregulated ingredients alter heart rate, blood pressure, cardiac contractility, and cardiac repolarization in a potentially proarrhythmic manner. OBJECTIVE: The purpose of this study was to describe our experience regarding sudden cardiac arrest (SCA) occurring in proximity to energy drink consumption in patients with underlying genetic heart diseases. METHODS: The electronic medical records of all SCA survivors with proven arrhythmias referred to the Mayo Clinic Windland Smith Rice Genetic Heart Rhythm Clinic for evaluation were reviewed to identify those who consumed an energy drink before their event. Patient demographics, clinical characteristics, documented energy drink consumption, and temporal relationship of energy drink consumption to SCA were obtained. RESULTS: Among 144 SCA survivors, 7 (5%; 6 female; mean age at SCA 29 ± 8 years) experienced an unexplained SCA associated temporally with energy drink consumption. Of these individuals, 2 had long QT syndrome and 2 had catecholaminergic polymorphic ventricular tachycardia; the remaining 3 were diagnosed with idiopathic ventricular fibrillation. Three patients (43%) consumed energy drinks regularly. Six patients (86%) required a rescue shock, and 1 (14%) was resuscitated manually. All SCA survivors have quit consuming energy drinks and have been event-free since. CONCLUSION: Overall, 5% of SCA survivors experienced SCA in proximity to consuming an energy drink. Although larger cohort studies are needed to elucidate the incidence/prevalence and quantify its precise risk, it seems prudent to sound an early warning on this potential risk.

2.
J Am Coll Cardiol ; 83(19): 1841-1851, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38719365

ABSTRACT

BACKGROUND: Nondilated left ventricular cardiomyopathy (NDLVC) has been recently differentiated from dilated cardiomyopathy (DCM). A comprehensive characterization of these 2 entities using cardiac magnetic resonance (CMR) and genetic testing has never been performed. OBJECTIVES: This study sought to provide a thorough characterization and assess clinical outcomes in a large multicenter cohort of patients with DCM and NDLVC. METHODS: A total of 462 patients with DCM (227) or NDLVC (235) with CMR data from 4 different referral centers were retrospectively analyzed. The study endpoint was a composite of sudden cardiac death or major ventricular arrhythmias. RESULTS: In comparison to DCM, NDLVC had a higher prevalence of pathogenic or likely pathogenic variants of arrhythmogenic genes (40% vs 23%; P < 0.001), higher left ventricular (LV) systolic function (LV ejection fraction: 51% ± 12% vs 36% ± 15%; P < 0.001) and higher prevalence of free-wall late gadolinium enhancement (LGE) (27% vs 14%; P < 0.001). Conversely, DCM showed higher prevalence of pathogenic or likely pathogenic variants of nonarrhythmogenic genes (23% vs 12%; P = 0.002) and septal LGE (45% vs 32%; P = 0.004). Over a median follow-up of 81 months (Q1-Q3: 40-132 months), the study outcome occurred in 98 (21%) patients. LGE with septal location (HR: 1.929; 95% CI: 1.033-3.601; P = 0.039) was independently associated with the risk of sudden cardiac death or major ventricular arrhythmias together with LV dilatation, older age, advanced NYHA functional class, frequent ventricular ectopic activity, and nonsustained ventricular tachycardia. CONCLUSIONS: In a multicenter cohort of patients with DCM and NDLVC, septal LGE together with LV dilatation, age, advanced disease, and frequent and repetitive ventricular arrhythmias were powerful predictors of major arrhythmic events.


Subject(s)
Cardiomyopathy, Dilated , Magnetic Resonance Imaging, Cine , Humans , Male , Female , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/physiopathology , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Follow-Up Studies
3.
Article in English | MEDLINE | ID: mdl-38819352

ABSTRACT

BACKGROUND: The effects of disease-causing MYBPC3 or MYH7 genetic variants on atrial myopathy, atrial fibrillation (AF) clinical course, and catheter ablation efficacy remain unclear. OBJECTIVES: The aim of this study was to characterize the atrial substrate of patients with MYBPC3- or MYH7-mediated hypertrophic cardiomyopathy (HCM) and its impact on catheter ablation outcomes. METHODS: A retrospective single-center study of patients with HCM who underwent genetic testing and catheter ablation for AF was performed. Patients with MYBPC3- or MYH7-mediated HCM formed the gene-positive cohort; those without disease-causative genetic variants formed the control cohort. High-density electroanatomical mapping was performed using a 3-dimensional mapping system, followed by radiofrequency ablation. RESULTS: Twelve patients were included in the gene-positive cohort (mean age 55.6 ± 9.9 years, 83% men, 50% MYBPC3, 50% MYH7, mean ejection fraction 59.3% ± 13.7%, mean left atrial [LA] volume index 51.7 ± 13.1 mL/m2, mean LA pressure 20.2 ± 5.4 mm Hg) and 15 patients in the control arm (mean age 61.5 ± 12.6 years, 60% men, mean ejection fraction 64.9% ± 5.1%, mean LA volume index 54.1 ± 12.8 mL/m2, mean LA pressure 19.6 ± 5.41 mm Hg). Electroanatomical mapping demonstrated normal voltage in 87.7% ± 5.03% of the LA in the gene-positive cohort and 94.3% ± 3.58% of the LA in the control cohort (P < 0.001). Of the abnormal regions, intermediate scar (0.1-0.5 mV) accounted for 6.33% ± 1.97% in the gene-positive cohort and 3.07% ± 2.46% in the control cohort (P < 0.01). Dense scar (<0.1 mV) accounted for 5.93% ± 3.20% in the gene-positive cohort and 2.61% ± 2.19% in the control cohort (P < 0.01). Freedom from AF at 12 months was similar between the gene-positive (75%) and control (73%) cohorts (P = 0.92), though a greater number of procedures were required in the gene-positive cohort. CONCLUSIONS: Patients with MYBPC3- or MYH7-mediated HCM undergoing AF ablation have appreciably more low-amplitude LA signals, suggestive of fibrosis. However, catheter ablation remains an effective rhythm-control strategy.

4.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798679

ABSTRACT

Background: Recently, we demonstrated transcriptional downregulation of hypertrophy pathways in myectomy tissue derived from patients with obstructive hypertrophic cardiomyopathy (HCM) despite translational activation of hypertrophy pathways. The mechanisms and modifiers of this transcriptional dysregulation in HCM remain unexplored. We hypothesized that miRNA and post-translational modifications of histones contribute to transcriptional dysregulation in HCM. Methods: First, miRNA-sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) were performed on HCM myectomy tissue and control donor hearts to characterize miRNA and differential histone marks across the genome. Next, the differential miRNA and histone marks were integrated with RNA-sequencing (RNA-seq) data. Finally, the effects of miRNA and histones were removed in silico to determine their necessity for transcriptional dysregulation of pathways. Results: miRNA-analysis identified 19 differentially expressed miRNA. ChIP-seq analysis identified 2,912 (7%) differential H3K4me3 peaks, 23,339 (21%) differential H3K9ac peaks, 33 (0.05%) differential H3K9me3 peaks, 58,837 (42%) differential H3K27ac peaks, and 853 (3%) differential H3K27me3 peaks. Univariate analysis of concordance between H3K9ac with RNA-seq data showed activation of cardiac hypertrophy signaling, while H3K27me showed downregulation of cardiac hypertrophy signaling. Similarly, miRNAs were predicted to result in downregulation of cardiac hypertrophy signaling. In silico knock-out that effects either miRNA or histones attenuated transcriptional downregulation while knocking out both abolished downregulation of hypertrophy pathways completely. Conclusion: Myectomy tissue from patients with obstructive HCM shows transcriptional dysregulation, including transcriptional downregulation of hypertrophy pathways mediated by miRNA and post-translational modifications of histones. Cardiac hypertrophy loci showed activation via changes in H3K9ac and a mix of activation and repression via H3K27ac.

5.
Heart Rhythm ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588996

ABSTRACT

BACKGROUND: The 2014 Heart Rhythm Society consensus statement defines histological (definite) and clinical (probable) diagnostic categories of cardiac sarcoidosis (CS), but few studies have compared their arrhythmic phenotypes and outcomes. OBJECTIVE: The purpose of this study was to evaluate the electrophysiological/arrhythmic phenotype and outcomes of patients with definite and probable CS. METHODS: We analyzed the arrhythmic/electrophysiological phenotype in a single-center North American cohort of 388 patients (median age 56 years; 39% female, n = 151) diagnosed with definite (n = 58) or probable (n = 330) CS (2000-2022). The primary composite outcome was survival to first ventricular tachycardia/fibrillation (VT/VF) event or sudden cardiac death. Key secondary outcomes were also assessed. RESULTS: At index evaluation, in situ cardiac implantable electronic devices and antiarrhythmic drug use were more common in definite CS. At a median follow-up of 3.1 years, the primary outcome occurred in 22 patients with definite CS (38%) and 127 patients with probable CS (38%) (log-rank, P = .55). In multivariable analysis, only a higher ratio of the 18F-fluorodeoxyglucose maximum standardized uptake value of the myocardium to the maximum standardized uptake value of the blood pool (hazard ratio 1.09; 95% confidence interval 1.03-1.15; P = .003, per 1 unit increase) was associated with the primary outcome. During follow-up, patients with definite CS had a higher burden of device-treated VT/VF events (mean 2.86 events per patient-year vs 1.56 events per patient-year) and a higher rate of progression to heart transplant/left ventricular assist device implantation but no difference in all-cause mortality compared with patients with probable CS. CONCLUSION: Patients with definite and probable CS had similarly high risks of first sustained VT/VF/sudden cardiac death and all-cause mortality, though patients with definite CS had a higher overall arrhythmia burden. Both CS diagnostic groups as defined by the 2014 Heart Rhythm Society criteria require an aggressive approach to prevent arrhythmic complications.

6.
Mayo Clin Proc ; 99(4): 610-629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38569811

ABSTRACT

Over the past 2 decades, significant efforts have been made to advance gene therapy into clinical practice. Although successful examples exist in other fields, gene therapy for the treatment of monogenic cardiovascular diseases lags behind. In this review, we (1) highlight a brief history of gene therapy, (2) distinguish between gene silencing, gene replacement, and gene editing technologies, (3) discuss vector modalities used in the field with a special focus on adeno-associated viruses, (4) provide examples of gene therapy approaches in cardiomyopathies, channelopathies, and familial hypercholesterolemia, and (5) present current challenges and limitations in the gene therapy field.


Subject(s)
Cardiomyopathies , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Genetic Therapy , Gene Editing , Cardiomyopathies/genetics , Cardiomyopathies/therapy
8.
Eur Heart J Digit Health ; 5(2): 192-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505482

ABSTRACT

Aims: ECG abnormalities are often the first signs of arrhythmogenic right ventricular cardiomyopathy (ARVC) and we hypothesized that an artificial intelligence (AI)-enhanced ECG could help identify patients with ARVC and serve as a valuable disease-detection tool. Methods and results: We created a convolutional neural network to detect ARVC using a 12-lead ECG. All patients with ARVC who met the 2010 task force criteria and had disease-causative genetic variants were included. All case ECGs were randomly assigned in an 8:1:1 ratio into training, validation, and testing groups. The case ECGs were age- and sex-matched with control ECGs at our institution in a 1:100 ratio. Seventy-seven patients (51% male; mean age 47.2 ± 19.9), including 56 patients with PKP2, 7 with DSG2, 6 with DSC2, 6 with DSP, and 2 with JUP were included. The model was trained using 61 case ECGs and 5009 control ECGs; validated with 7 case ECGs and 678 control ECGs and tested in 22 case ECGs and 1256 control ECGs. The sensitivity, specificity, positive and negative predictive values of the model were 77.3, 62.9, 3.32, and 99.4%, respectively. The area under the curve for rhythm ECG and median beat ECG was 0.75 and 0.76, respectively. Conclusion: Our study found that the model performed well in excluding ARVC and supports the concept that the AI ECG can serve as a biomarker for ARVC if a larger cohort were available for network training. A multicentre study including patients with ARVC from other centres would be the next step in refining, testing, and validating this algorithm.

9.
Semin Nucl Med ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38480041

ABSTRACT

Cardiac sarcoidosis (CS), an increasingly recognized disease of unknown etiology, is associated with significant morbidity and mortality. Given the limited diagnostic yield of traditional endomyocardial biopsy (EMB), there is increasing reliance on multimodality cardiovascular imaging in the diagnosis and management of CS, with EMB being largely supplanted by the use of 18F-fluorodeoxyglucose (FDG-PET) and cardiac magnetic resonance imaging (CMR). This article aims to provide a comprehensive review of imaging modalities currently utilized in the screening, diagnosis, and monitoring of CS, while highlighting the latest developments in each area.

10.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464071

ABSTRACT

Background: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disease. Women with HCM tend to have a later onset but more severe disease course. However, the underlying pathobiological mechanisms for these differences remain unknown. Methods: Myectomy samples from 97 patients (53 males/44 females) with symptomatic obstructive HCM and 23 control cardiac tissues were included in this study. RNA-sequencing was performed on all samples. Mass spectrometry-based proteomics and phosphoproteomics was performed on a representative subset of samples. Results: The transcriptome, proteome, and phosphoproteome was similar between sexes and did not separate on PCA plotting. Overall, there were 482 differentially expressed genes (DEGs) between control females and control males while there were only 53 DEGs between HCM females and HCM males. There were 1963 DEGs between HCM females and control females compared to 1064 DEGs between HCM males and control males. Additionally, there was increased transcriptional downregulation of hypertrophy pathways in HCM females and in HCM males. HCM females had 119 differentially expressed proteins compared to control females while HCM males only had 27 compared to control males. Finally, the phosphoproteome showed females had 341 differentially phosphorylated proteins (DPPs) compared to controls while males only had 184. Interestingly, there was hypophosphorylation and inactivation of hypertrophy pathways in females but hyperphosphorylation and activation in males. Conclusion: There are subtle, but biologically relevant differences in the multi-omics profile of HCM. This study provides the most comprehensive atlas of sex-specific differences in the transcriptome, proteome, and phosphoproteome present at the time of surgical myectomy for obstructive HCM.

11.
medRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38370760

ABSTRACT

Background: Long QT syndrome (LQTS) is a lethal arrhythmia condition, frequently caused by rare loss-of-function variants in the cardiac potassium channel encoded by KCNH2. Variant-based risk stratification is complicated by heterogenous clinical data, incomplete penetrance, and low-throughput functional data. Objective: To test the utility of variant-specific features, including high-throughput functional data, to predict cardiac events among KCNH2 variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,323 variants in KCNH2 and recorded potassium current densities for 506 KCNH2 variants. Next, we deeply phenotyped 1150 KCNH2 missense variant patients, including ECG features, cardiac event history (528 total cardiac events), and mortality. We then assessed variant functional, in silico, structural, and LQTS penetrance data to stratify event-free survival for cardiac events in the study cohort. Results: Variant-specific current density (HR 0.28 [0.13-0.60]) and estimates of LQTS penetrance incorporating MAVE data (HR 3.16 [1.59-6.27]) were independently predictive of severe cardiac events when controlling for patient-specific features. Risk prediction models incorporating these data significantly improved prediction of 20 year cardiac events (AUC 0.79 [0.75-0.82]) over patient-only covariates (QTc and sex) (AUC 0.73 [0.70-0.77]). Conclusion: We show that high-throughput functional data, and other variant-specific features, meaningfully contribute to both diagnosis and prognosis of a clinically actionable monogenic disease.

13.
14.
Mayo Clin Proc ; 99(2): 241-248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309936

ABSTRACT

OBJECTIVE: To describe our early observations with sudden cardiac arrest (SCA) and sudden death (SD) in patients using vape products. PATIENTS AND METHODS: A retrospective analysis of Mayo Clinic's Windland Smith Rice Genetic Heart Rhythm Clinic and Sudden Death Genomics Laboratory was performed on all SCA survivors and decedents who presented between January 1, 2007, and December 31, 2021, to identify patients/decedents with a history of vaping. Data abstraction included patient demographics, clinical characteristics, and documented use of vape products. RESULTS: Among 144 SCA survivors and 360 SD victims, there were six individuals (1%; 3 females) with unexplained SCA (n=4) or SD (n=2) that was temporally associated with vaping use with a mean age at sentinel event of 23±5 years. The SCA survivors include a 19-year-old male who was resuscitated from documented ventricular fibrillation 40 minutes after vaping and a 19-year-old male who was resuscitated from ventricular fibrillation a few hours post vaping. The first SD victim was a 19-year-old female with exercise-induced asthma who died in her sleep after vaping that evening. Autopsy results showed eosinophilic infiltrates in the lung tissue and death was attributed to bronchial asthma. The second vaping-associated death involved a 26-year-old male whose autopsy attributed the death to acute respiratory distress syndrome. CONCLUSION: We have identified six young individuals with a history of vaping who experienced a near fatal episode or a tragic SD. Although larger cohort studies are needed to quantify the actual risk of SD, it seems prudent to sound an early warning about vaping's potential lethality.


Subject(s)
Heart Arrest , Vaping , Humans , Male , Female , Adolescent , Young Adult , Adult , Ventricular Fibrillation/complications , Vaping/adverse effects , Retrospective Studies , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology
17.
Sci Rep ; 13(1): 14341, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658118

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a genetically heterogenous condition with about half of cases remaining genetically elusive or non-genetic in origin. HCM patients with a positive genetic test (HCMSarc) present earlier and with more severe disease than those with a negative genetic test (HCMNeg). We hypothesized these differences may be due to and/or reflect proteomic and phosphoproteomic differences between the two groups. TMT-labeled mass spectrometry was performed on 15 HCMSarc, 8 HCMNeg, and 7 control samples. There were 243 proteins differentially expressed and 257 proteins differentially phosphorylated between HCMSarc and HCMNeg. About 90% of pathways altered between genotypes were in disease-related pathways and HCMSarc showed enhanced proteomic and phosphoproteomic alterations in these pathways. Thus, we show HCMSarc has enhanced proteomic and phosphoproteomic dysregulation observed which may contribute to the more severe disease phenotype.


Subject(s)
Cardiomyopathy, Hypertrophic , Proteomics , Humans , Genotype , Phenotype , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/surgery , Genetic Testing
18.
Heart Rhythm O2 ; 4(9): 581-591, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37744942

ABSTRACT

Mitral valve prolapse (MVP) is a heart valve disease that is often familial, affecting 2%-3% of the general population. MVP with or without mitral regurgitation can be associated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). Research on familial MVP has specifically focused on genetic factors, which may explain the heritable component of the disease estimated to be present in 20%-35%. Furthermore, the structural and electrophysiological substrates underlying SCD/ventricular arrhythmia risk in MVP have been studied postmortem and in the electrophysiology laboratory, respectively. Understanding how familial MVP and rhythm disorders are related may help patients with MVP by individualizing risk and working to develop effective management strategies. This contemporary, state-of-the-art, expert review focuses on genetic factors and familial components that underlie MVP and arrhythmia and encapsulates clinical, genetic, and electrophysiological issues that should be the objectives of future research.

19.
J Am Coll Cardiol ; 82(7): 603-611, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37558373

ABSTRACT

BACKGROUND: Recently, electronic gaming has been reported as a precipitant of life-threatening cardiac arrhythmias in susceptible individuals. However, the prevalence of cardiac events in genetic heart diseases (GHDs) in the setting of electronic gaming has not been established. OBJECTIVES: In this study, we sought to define the prevalence of cardiac events occurring in the setting of electronic gaming in GHDs. METHODS: Retrospective review of all patients evaluated and treated at Mayo Clinic's genetic heart rhythm clinic from July 2000 to November 2022 was performed to identify patients with a history of playing electronic games at the time of their cardiac event. Cardiac event was used to define events occurring before diagnosis, and breakthrough cardiac event (BCE) was used for events occurring after diagnosis. RESULTS: Of the 3,370 patients with a GHD (mean age at first evaluation 27 ± 19 years, 55% female), 1,079 (32%) had a cardiac event before diagnosis, with 5 patients (0.5%) having an electronic gaming-associated event (3 catecholaminergic polymorphic ventricular tachycardia, 1 long QT syndrome, and 1 premature ventricular contraction-triggered ventricular fibrillation). After diagnosis and treatment, 431 patients (13%) experienced ≥1 BCE during follow-up, of which 1 electronic gaming-associated BCE (0.2%) occurred in a patient with catecholamine-sensitive right outflow tract ventricular tachycardia. CONCLUSIONS: Although anecdotal cases of electronic gaming-associated life-threatening arrhythmias have been reported, in this largest single-center study to date, we show that these are extremely rare occurrences. While electronic gaming can have adverse health consequences, the threat of electronic gaming-triggered sudden death should not be used to try to curb time spent gaming.


Subject(s)
Heart Diseases , Tachycardia, Ventricular , Video Games , Humans , Female , Child , Adolescent , Young Adult , Adult , Middle Aged , Male , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Arrhythmias, Cardiac/epidemiology , Heart , Tachycardia, Ventricular/diagnosis , Video Games/adverse effects
20.
Int J Cardiol ; 389: 131173, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37423567

ABSTRACT

BACKGROUND: Myocardial inflammation contributes to the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a clinically and genetically heterogenous disorder. Due to phenotypic overlap, some patients with genetic ACM may be evaluated for an underlying inflammatory cardiomyopathy. However, the cardiac fludeoxyglucose (FDG) positron emission tomography (PET) findings in ACM patients have not been elucidated. METHODS: All genotype-positive patients in the Mayo Clinic ACM registry (n = 323) who received a cardiac FDG PET were included in this study. Pertinent data were extracted from the medical record. RESULTS: Collectively, 12/323 (4%; 67% female) genotype-positive ACM patients received a cardiac PET FDG scan as part of their clinical evaluation (median age at scan 49 ± 13 years). Amongst these patients, pathogenic/likely pathogenic variants were detected in LMNA (n = 7), DSP (n = 3), FLNC (n = 1) and PLN (n = 1). Of note, 6/12 (50%) had abnormal myocardial FDG uptake, including diffuse (entire myocardium) uptake in 2/6 (33%), focal (1-2 segments) uptake in 2/6 (33%) and patchy (3+ segments) in 2/6 (33%). Median myocardial standardized uptake value ratio was 2.1. Interestingly, LMNA-positive patients accounted for 3 out of 6 (50%) positive studies (diffuse uptake in 2 and focal uptake in 1). CONCLUSION: Abnormal myocardial FDG uptake is common in genetic ACM patients undergoing cardiac FDG PET. This study further supports the role of myocardial inflammation in ACM. Further investigation is needed to determine role of FDG PET in diagnosis and management of ACM and investigate the role of inflammation in ACM.


Subject(s)
Fluorodeoxyglucose F18 , Myocarditis , Humans , Female , Adult , Middle Aged , Male , Positron-Emission Tomography/methods , Inflammation , Genotype , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL
...