Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 32: 106080, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32793778

ABSTRACT

Vegetation, generally present along river margins and floodplains, governs key hydrodynamic processes in riverine systems. Despite the flow-influencing mechanisms exhibited by natural vegetation and driven by its complex morphology and flexibility, vegetation has been conventionally simulated by using rigid cylinders. This article presents a dataset obtained from hydraulic experiments performed for investigating the flow-vegetation interaction in partly vegetated channels. Vegetation was simulated by using both natural-like and rigid model plants. Specifically, two sets of experiments are described: in the first, vegetation was simulated with natural-like flexible foliated plants standing on a grassy bed; in the second, rigid cylinders were used. Experiments with rigid cylinders were designed to be compared against tests with natural-like plants, as to explore the effects of vegetation representation. The following experimental data were produced: 3D instantaneous velocity measured by acoustic Doppler velocimetry, vegetation motion video recordings, and auxiliary data including detailed vegetation characterization. These experiments are unique both for the use of natural-like flexible woody vegetation in hydraulic experiments and for the similarity achieved between the resulting observed vegetated shear layers. These data are expected to be useful in vegetated flows model development and validation, and represent a unique benchmark for the interpretation of the flow-vegetation interaction in partly vegetated channels.

2.
Water Res ; 92: 22-37, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26827255

ABSTRACT

Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives.


Subject(s)
Metals/isolation & purification , Nanocomposites/chemistry , Polymers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water/chemistry , Polymers/chemical synthesis
3.
Ecotoxicol Environ Saf ; 123: 65-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26256248

ABSTRACT

Chloramphenicol sodium succinate (CAP, C15H15Cl2N2 Na2O8) is a broad-spectrum antibiotic exhibiting activity against both Gram-positive and Gram-negative bacteria as well as other groups of microorganisms only partially removed by conventional activated sludge wastewater treatment plants. Thus, CAP and its metabolites can be found in effluents. The present work deals with the photocatalytic degradation of CAP using TiO2 as photocatalyst. We investigated the optimization of reaction contact time and concentration of TiO2 considering CAP and its by-products removal as well as effluent ecotoxicity elimination. Considering a CAP real concentration of 25mgL(-1), kinetic degradation curves were determined at 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2gL(-1) TiO2 after 5, 10, 30, 60 and 120min reaction time. Treated samples were checked for the presence of by-products and residual toxicity (V. fischeri, P. subcapitata, L. sativum and D. magna). Results evidenced that the best combination for CAP and its by-products removal could be set at 1.6gL(-1) of TiO2 for 120min with an average residual toxicity of approximately 10%, that is the threshold set for negative controls in most toxicity tests for blank and general toxicity test acceptability.


Subject(s)
Anti-Bacterial Agents/chemistry , Chloramphenicol/analogs & derivatives , Water Pollutants, Chemical/chemistry , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Animals , Anti-Bacterial Agents/toxicity , Biodegradation, Environmental , Catalysis , Chloramphenicol/chemistry , Chloramphenicol/toxicity , Chlorophyta/drug effects , Chlorophyta/metabolism , Daphnia/drug effects , Daphnia/metabolism , Lepidium sativum/drug effects , Lepidium sativum/metabolism , Sewage/chemistry , Titanium/chemistry , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity
4.
Springerplus ; 3: 133, 2014.
Article in English | MEDLINE | ID: mdl-25674436

ABSTRACT

Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).

SELECTION OF CITATIONS
SEARCH DETAIL
...