Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21254534

ABSTRACT

SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To elucidate the mechanism of infection, protection, or rapid evolution until fatal outcome of the disease we performed a study in hospitalized COVID-19 patients to investigate the time course of the antibody response in relation to the outcome. In comparison we investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects. Study results show that patients produce a strong antibody response to SARS-CoV-2 with high correlation between different viral antigens (spike protein and nucleoprotein) and among antibody classes (IgA, IgG, and IgM and neutralizing antibodies). The peak is reached by 3 weeks from hospital admission followed by a sharp decrease. No difference was observed in any parameter of the antibody classes, including neutralizing antibodies, between subjects who recovered or with fatal outcome. Only few asymptomatic subjects developed antibodies at detectable levels.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-342428

ABSTRACT

Due to the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for reliable high-throughput serological assays in order to evaluate the immunological responses against SARS-COV-2 virus and to enable population screening, as well as vaccines and drugs efficacy testing. Several serological assays for SARS-CoV-2 are now becoming available in the market. However, it has also become extremely important to have well-established assays with desirable high sensitivity and specificity. To date, the micro-neutralization (MN) assay, is currently considered the gold-standard being capable of evaluating and detecting, functional neutralizing antibodies (nAbs). Several protocols exist for microneutralization assays which vary in several steps of the protocol: cell seeding conditions, number of cells seeded, virus amount used in the infection step, virus-serum-cells incubation period etc. These potential differences account for a high degree of variability and inconsistency of the results and using a harmonized protocol for the micro-neutralization assay could potentially solve this. Given this situation, the main aim of our study was to carry out SARS-CoV-2 wild type virus MN assay in order to investigate which optimal tissue culture infective dose 50 (TCID50) infective dose in use is the most adequate choice for implementation in terms of reproducibility, standardization possibilities and comparability of results. Therefore, we assessed the MN by using two different viral infective doses: a standard dose of 100 TCID50/well and a lower dose of 25 TCID50/well. The results obtained, yielded by MN on using the lower infective dose (25 TCID50), were in line with those obtained with the standard infective dose; in some cases, however, we detected a titre that was one or two dilution steps higher, which maintained all negative samples negative. This suggesting that the lower dose can potentially have a positive impact on the detection and estimation of neutralizing antibodies present in a given sample, showing higher sensitivity but similar specificity and therefore, it would require a more accurate assessment and cross-laboratories standardisation especially when MN is employed as serological assay of choice for pre-clinical and clinical studies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-243717

ABSTRACT

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 18 million cases of disease and 700,000 deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays aimed at detecting different classes of antibodies constitute the best surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population, in order to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to know the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict population immunity and possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, we performed a subtyping Immunoglobulin G ELISA. Our data showed an excellent statistical correlation between the neutralization titer and the IgG, IgM and IgA ELISA response against the receptor-binding domain of the spike protein, confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories which do not have Biosecurity level-3 facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...