Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(11): 2634-2640, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28416131

ABSTRACT

Hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells, and as a consequence is an attractive target for selective inhibition. This paper describes the discovery of a novel family of HCV NS5B non-nucleoside inhibitors inspired by the bioisosterism between sulfonamide and phosphonamide. Systematic structural optimization in this new series led to the identification of IDX375, a potent non-nucleoside inhibitor that is selective for genotypes 1a and 1b. The structure and binding domain of IDX375 were confirmed by X-ray co-crystalisation study.


Subject(s)
Antiviral Agents/chemistry , Hepacivirus/enzymology , Lactams/chemistry , Organophosphorus Compounds/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Genotype , Half-Life , Haplorhini , Hepacivirus/genetics , Hepacivirus/physiology , Humans , Lactams/pharmacology , Mice , Molecular Dynamics Simulation , Organophosphorus Compounds/pharmacology , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
Bioorg Med Chem ; 10(10): 3153-61, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12150860

ABSTRACT

3'-Deoxy-3'-C-CF3, 2',3'-dideoxy-3'-C-CF3 and 2',3'-unsaturated-3'-C-CF3 nucleoside derivatives of adenosine and cytidine have been synthesized. All these derivatives were prepared by glycosylation of adenine and uracil with a suitable peracylated 3-trifluoromethyl sugar precursor. The resulting protected nucleosides were subject to appropriate chemical modifications to afford the target nucleoside derivatives. Additionally, the chemical stability in acidic and neutral media of the 2',3'-dideoxy-3'-C-CF3 and 2',3'-unsaturated-3'-C-CF3 nucleoside derivatives of adenosine was compared to that of their parent nucleosides 2',3'-dideoxyadenosine (ddA) and 2',3'-dideoxy-2',3'-didehydroadenosine (d(4)A). Our results confirm that addition of a trifluoromethyl group at C-3' on such nucleoside derivatives appears to confer increased chemical stability toward acid-catalyzed cleavage of the glycosidic bond comparatively to their parent counterparts. When evaluated for their antiviral activity in cell culture experiments, two compounds, namely, 2',3'-dideoxy-3'-C-CF3-adenosine and 2',3'-dideoxy-2',3'-didehydro-3'-C-CF3-cytidine exhibited moderate anti-HBV activity with EC50 values of 10 and 5 microM, respectively.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/chemical synthesis , Cytosine/analogs & derivatives , Adenosine/chemical synthesis , Adenosine/pharmacology , Antiviral Agents/pharmacology , Chlorofluorocarbons, Methane , Cytosine/chemical synthesis , Cytosine/pharmacology , Drug Stability , HIV-1/drug effects , Hepatitis B virus/drug effects , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...