Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282537

ABSTRACT

Immunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines. Here we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (ID, n=25) diseases. We show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to both virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus. Hence, additional booster doses are recommended to frail patients.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22269335

ABSTRACT

The new variant Omicron (B.1.1.529) of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. The Omicron becomes the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on neutralizing activity of vaccinated sera against Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against SARS-CoV-2 Omicron (B.1.1.529) variant compared to the reference Wuhan D614G (B.1) variant in individuals vaccinated with 2 doses of Sputnik V or BNT162b2 in different time points up to 6 months after vaccination. We performed analysis on sample pools with comparable NtAb to Wuhan D614G variant. The decrease in neutralizing antibody (NtAb) to the Omicron variant was 8.1 folds for group of Sputnik V-vaccinated and 21.4 folds for group of BNT162b2-vaccinated. Analysis showed that 74.2% of Sputnik V- and 56.9% of BNT162b2-vaccinated sera had detectable NtAb to SARS-CoV-2 Omicron variant. The decrease in NtAb to SARS-CoV-2 Omicron variant compared to Wuhan variant has been shown for many COVID-19 vaccines in use, with some showing no neutralization at all. Today the necessity of third booster vaccination is obvious. And the most effective approach, already shown in several studies, is the use of heterologous booster vaccination pioneered in COVID-19 vaccines by Sputnik V.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22269133

ABSTRACT

BackgroundPatients with solid or hematological tumors, neurological and immune-inflammatory disorders represent potentially fragile subjects with increased risk to experience severe COVID-19 and inadequate response to SARS-CoV2 vaccination. MethodsWe designed a prospective Italian multicentric study to assess humoral and T-cell response to SARS-CoV2 vaccination in patients (n=378) with solid tumors (ST), hematological malignancies (HM), neurological (ND) and immuno-rheumatological diseases (ID). The immunogenicity of primary vaccination schedule and of the booster dose were analyzed. ResultsOverall, patient seroconversion rate after two doses was 62.1%. A significant lower rate was observed in HM (52.4%) and ID (51.9%) patients compared to ST (95.6%) and ND (70.7%); a lower median level of antibodies was detected in HM and ID versus the others (p<0.0001). A similar rate of patients with a positive SARS-CoV2 T-cell response was observed in all disease groups, with a higher level observed in the ND group. The booster dose improved humoral responses in all disease groups, although with a lower response in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, the independent predictors for seroconversion were disease subgroups, type of therapies and age. Notably, the ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (p<0.0001), but had no effects on the T-cell responses. ConclusionsImmunosuppressive treatment more than disease type per se is a risk factor for low humoral response after vaccination. The booster dose can improve both humoral and T-cell response. Articles main point- Lower rate of seroconversion was observed in fragile patients as compared to healthy controls - The booster dose improves humoral and T-cell response in all fragile patient groups - Immunosuppressive treatment was associated with the worst humoral response to vaccination, but had no effects on T-cell responses.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-465294

ABSTRACT

The new coronavirus that emerged, called SARS-CoV-2, is the causative agent of the COVID-19 pandemic. The identification of potential drug candidates that can rapidly enter clinical trials for the prevention and treatment of COVID-19 is an urgent need, despite the recent introduction of several new vaccines for the prevention and protection of this infectious disease, which in many cases becomes severe. Drug repurposing (DR), a process for studying existing pharmaceutical products for new therapeutic indications, represents one of the most effective potential strategies employed to increase the success rate in the development of new drug therapies. We identified raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a potential pharmacological agent for the treatment of COVID-19 patients. Following a virtual screening campaign on the most relevant viral protein targets, in this work we report the results of the first pharmacological characterization of raloxifene in relevant cellular models of COVID-19 infection. The results obtained on all the most common viral variants originating in Europe, United Kingdom, Brazil, South Africa and India, currently in circulation, are also reported, confirming the efficacy of raloxifene and, consequently, the relevance of the proposed approach. Taken together, all the information gathered supports the clinical development of raloxifene and confirms that the drug can be proposed as a viable new option to fight the pandemic in at least some patient populations. The results obtained so far have paved the way for a first clinical study to test the safety and efficacy of raloxifene, just concluded in patients with mild to moderate COVID-19.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21263882

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccines are proving to be very effective in preventing severe illness; however, although rare, post-vaccine infections have been reported. The present study describes 94 infections (47.9% symptomatic, 52.1% asymptomatic), occurred in Lazio Region (Central Italy) in the first trimester 2021, after first or second dose of mRNA BNT162b2 vaccine. Median viral load at diagnosis was independent from number and time of vaccine dose administration, despite the higher proportion of samples with low viral load observed in fully vaccinated individuals. More importantly, infectious virus was cultured from NPS collected from both asymptomatic and symptomatic vaccinated individuals, suggesting that, at least in principle, they can transmit the infection to susceptible people. The majority of the post-vaccine infections here reported, showed pauci/asymptomatic clinical course, confirming the impact of vaccination on COVID-19 disease. Most cases (78%) showed infection in presence of neutralizing antibodies at the time of infection diagnosis, presumably attributable to vaccination, due to the concomitant absence of anti-N IgG in most cases. The proportion of post-vaccine infections attributed either to Alpha and Gamma VOCs was similar to the proportion observed in the contemporary unvaccinated population in Lazio region. In addition, mutational analysis did not suggest enrichment of a defined set of Spike protein substitutions depending on the vaccination status. Characterization of host and virus factors associated with vaccine breakthrough, coupled with intensive and continuous monitoring of involved viral strains, is crucial to adopt informed vaccination strategies.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-448343

ABSTRACT

The COVID-19 pandemic caused by the {beta}-coronavirus SARS-CoV-2 has made the development of safe and effective vaccines a critical global priority. To date, four vaccines have already been approved by European and American authorities for preventing COVID-19 but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle, a technology previously utilized for cancer vaccines. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 Spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax - a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein RBD - induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function and significantly lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started in Italy.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21258961

ABSTRACT

Here we report on the humoral and cellular immune response in eight volunteers who autonomously chose to adhere to the Italian national COVID-19 vaccination campaign more than 3 months after receiving a single administration GRAd-COV2 vaccine candidate in the context of the phase 1 clinical trial. We observed a clear boost of both binding/neutralizing antibodies as well as T cell responses upon receipt of the heterologous BNT162b2 or ChAdOx1-nCOV19 vaccines. These results, despite the limitation of the small sample size, support the concept that a single-dose of an adenoviral vaccine may represent an ideal tool to effectively prime a balanced immune response, which can be boosted to high levels by a single dose of a different vaccine platform.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21255202

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are urgently needed to control the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand. We have developed a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized pre-fusion SARS-CoV-2 Spike protein, named GRAd-COV2. We aimed to assess the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. To this purpose, a phase 1, dose-escalation, open-label trial was conducted including 90 healthy subjects, (45 aged 18-55 years and 45 aged 65-85 years), who received a single intramuscular administration of GRAd-CoV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious AE was reported. Four weeks after vaccination, seroconversion to Spike/RBD was achieved in 43/44 young volunteers and in 45/45 older subjects. Consistently, neutralizing antibodies were detected in 42/44 younger age and 45/45 older age volunteers. In addition, GRAd-COV2 induced a robust and Th1-skewed T cell response against the S antigen in 89/90 subjects from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support further development of this vaccine. One Sentence SummaryGRAd-COV2, a candidate vaccine for COVID-19 based on a novel gorilla adenovirus, is safe and immunogenic in younger and older adults

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-362848

ABSTRACT

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, observations consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show much increased tolerance to potential virus escape mutants. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for developing potent antiviral therapies against COVID-19 and related viral threats, and our strategy can be readily applied to any antibody drug currently in development.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-137349

ABSTRACT

Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-20111682

ABSTRACT

Serological assays for anti-SARS-CoV-2 antibodies are now of critical importance to support diagnosis, guide epidemiological intervention, and understand immune response to natural infection and vaccine administration. We developed and validated new anti-SARS-CoV-2 IgG, IgM and IgA ELISA tests (ENZY-WELL SARS-CoV-2 ELISA, DIESSE Diagnostica Senese S.p.a.) based on whole-virus antigens. We used a total of 553 serum samples including samples from COVID-19 suspected and confirmed cases, healthy donors, and patients positive for other infections or autoimmune conditions. Overall, the assays showed good concordance with the indirect immunofluorescence reference test in terms of sensitivity and specificity. Especially for IgG and IgA, we observed high sensitivity (92.5 and 93.6%, respectively); specificity was high (>96%) for all antibody types ELISAs. In addition, sensitivity was linked to the days from symptoms onset (DSO) due to the seroconversion window, and for ENZY-WELL SARS-CoV-2 IgG and IgA ELISAs resulted 100% in those samples collected after 10 and 12 DSO, respectively. The results showed that ENZY-WELL SARS-CoV-2 ELISAs may represent a valid option for both diagnostic and epidemiological purposes, covering all different antibody types developed in SARS-CoV-2 immune response.

SELECTION OF CITATIONS
SEARCH DETAIL
...