Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 03 04.
Article in English | MEDLINE | ID: mdl-33661101

ABSTRACT

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


Subject(s)
Complement Inactivator Proteins/genetics , Learning , Membrane Proteins/genetics , Motor Activity/genetics , Neuronal Plasticity/genetics , Animals , Complement Inactivator Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice
2.
Reproduction ; 2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27777323

ABSTRACT

Allopregnanolone, a progesterone metabolite, is one of the best characterized neurosteroids. In a dose that mimics serum levels during stress, allopregnanolone inhibits sexual receptivity and ovulation and induces a decrease in luteinizing hormone levels. The aim of this work was to examine the effect of an intracerebroventricular administration of allopregnanolone on ovarian morphophysiology, serum and tissue levels of progesterone and estrogen, and enzymatic activity of 3ß-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and 3α-hydroxysteroid oxido-reductase in the ovary and in the medial basal hypothalamus on the morning of estrus. Ovarian morphology was analyzed under light microscopy. The hormone assays were performed by radioimmunoassay. The enzymatic activities were measured by spectrophotometric analysis. The morphometric analysis revealed that, in allopregnanolone-treated animals, the number of secondary and Graafian follicles was decreased while that of atretic follicles and cysts was significantly increased. Some cysts showed luteinized unruptured follicles. There were no differences in the number of tertiary follicles or corpora lutea in comparison with the corresponding control groups. In allopregnanolone-treated animals, progesterone serum levels were increased, while ovarian progesterone levels were decreased. Moreover, 3ß-HSD and 3α-HSOR enzymatic activities were increased in the medial basal hypothalamus while ovarian levels were decreased. The enzyme 20α-hydroxysteroid dehydrogenase showed the opposite profile. The results of this study showed that allopregnanolone interferes on ovarian steroidogenesis and ovarian morphophysiology in rats, providing a clear evidence for the role of this neurosteroid in the control of reproductive function under stress situations.

3.
Neurochem Int ; 88: 73-87, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26026592

ABSTRACT

Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with synaptic loss. Since metabolism of glutamate is dependent on interactions between neurons and surrounding astroglia, our results suggest that glutamate neurotransmitter pathways might be impaired in the brain of prenatally stressed rats. To study the effect of prenatal stress on the metabolism and neurotransmitter function of glutamate, pregnant rats were subjected to restrain stress during the last week of gestation. Brains of the adult offspring were used to assess glutamate metabolism, uptake and release as well as expression of glutamate receptors and transporters. While glutamate metabolism was not affected it was found that prenatal stress (PS) changed the expression of the transporters, thus, producing a higher level of vesicular vGluT-1 in the frontal cortex (FCx) and elevated levels of GLT1 protein and messenger RNA in the hippocampus (HPC) of adult male PS offspring. We also observed increased uptake capacity for glutamate in the FCx of PS male offspring while no such changes were observed in the HPC. The results show that changes mediated by PS on the adult glutamatergic system are brain region specific. Overall, PS produces long-term changes in the glutamatergic system modulating the expression of glutamate transporters and altering synaptic transmission of the adult brain.


Subject(s)
Glutamic Acid/metabolism , Prenatal Exposure Delayed Effects/metabolism , Stress, Psychological/metabolism , Synaptic Transmission/physiology , Animals , Female , Hippocampus/metabolism , Male , Organ Culture Techniques , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Wistar , Stress, Psychological/complications
4.
Endocrine ; 40(1): 21-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21455639

ABSTRACT

LHRH release from hypothalamus is influenced by the neurotransmitter glutamate that acts, among others, on NMDA receptors present in LHRH neurons. On the other hand, the neurosteroid allopregnanolone can modulate the activity of specific neurotransmitter receptors and affect neurotransmitter release. We examined the role of allopregnanolone on in vitro LHRH and glutamate release from mediobasal hypothalamus and anterior preoptic area of ovariectomized rats with estrogen and progesterone replacement. Moreover, we evaluated whether the neurosteroid might act through modulation of NMDA receptors. Allopregnanolone induced an increase in LHRH release. This effect was reversed when the NMDA receptors were blocked by the NMDA antagonist 2-amino-7-phosphonoheptanoic acid (AP-7) indicating that this neurosteroid would interact with NMDA receptors. Moreover allopregnanolone induced an augment in K(+) evoked [(3)H]-glutamate release from mediobasal hypothalamus-anterior preoptic area explants and this effect was also reversed when NMDA receptors were blocked with AP-7. These results suggest an important physiologic function of allopregnanolone on the regulation of neuroendocrine function in female adult rats. Not only appears to be involved in enhancing LHRH release through modulation of NMDA receptors but also in the release of glutamate which is critical in the control of LHRH release.


Subject(s)
Glutamic Acid/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Neurotransmitter Agents/pharmacology , Pregnanolone/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , 2-Amino-5-phosphonovalerate/analogs & derivatives , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Estrogen Replacement Therapy , Female , Hypothalamus/drug effects , In Vitro Techniques , Models, Animal , N-Methylaspartate/pharmacology , Ovariectomy , Preoptic Area/drug effects , Preoptic Area/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...