Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(2): e2207321, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36255142

ABSTRACT

Magnetic data storage and processing offer certain advances over conventional technologies, amongst which nonvolatility and low power operation are the most outstanding ones. Skyrmions are a promising candidate as a magnetic data carrier. However, the sputtering of skyrmion films and the control of the skyrmion nucleation, motion, and annihilation remains challenging. This work demonstrates that using optimized focused ion beam irradiation and annealing protocols enables the skyrmion phase in W/CoFeB/MgO thin films to be accessed easily. By analyzing ion-beam-engineered skyrmion hosting wires, excited by sub-100 ns current pulses, possibilities to control skyrmion nucleation, guide their motion, and control their annihilation unfold. Overall, the key elements needed to develop extensive skyrmion networks are presented.

2.
Materials (Basel) ; 7(3): 1652-1686, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-28788537

ABSTRACT

The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

SELECTION OF CITATIONS
SEARCH DETAIL
...