Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(3): 437-441, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33108441

ABSTRACT

ABSTRACT: Novel foods, such as edible insects and food products on the basis of insects, could play an important role in both human and animal nutrition in the future. The identification of dangers associated with insect consumption is fundamental to guarantee consumer safety and adequate regulatory guidelines for operators of the food sector. Although former studies have focused on the microbiological contamination of fresh or processed edible insects, so far little information is available about the occurrence of foodborne parasites, such as Toxoplasma gondii, whose life cycles make them candidates for potential insect breeding substrate contamination. Hence, we investigated the presence of contaminating T. gondii in farmed edible insects to rule out this further hazard for consumers. Four species of insects most commonly used as food for human consumption were analyzed: mealworm; African migratory locust, house cricket, and silkworm. Samples included live specimens but also minimally (dehydrated) and highly processed edible insects. Traces of T. gondii DNA were detected in samples of dehydrated mealworm. These results highlight the need for implementing good farming and processing practices with particular care paid to safe storage and handling of feed and substrates used for edible insects to reduce the chance of T. gondii entering the human food chain.


Subject(s)
Edible Insects , Toxoplasma , Animals , Food , Food Safety , Humans , Insecta
2.
Sensors (Basel) ; 18(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469377

ABSTRACT

Honey is usually classified as "unifloral" or "multifloral", depending on whether a dominating pollen grain, originating from only one particular plant, or no dominant pollen type in the sample is found. Unifloral honeys are usually more expensive and appreciated than multifloral honeys, which highlights the importance of honey authenticity. Melissopalynological analysis is used to identify the botanical origin of honey, counting down the number of pollens grains of a honey sample, and calculating the respective percentages of the nectariferous pollens. In addition, sensory properties are also very important for honey characterization, and electronic senses emerged as useful tools for honey authentication. In this work, a comparison of the results obtained from melissopalynological analysis with those provided by a potentiometric electronic tongue is given, resulting in a 100% match between the two techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...