Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Mol Neurodegener ; 18(1): 20, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005644

ABSTRACT

BACKGROUND: Aggregation of α-synuclein (α-syn) is a prominent feature of Parkinson's disease (PD) and other synucleinopathies. Currently, α-syn seed amplification assays (SAAs) using cerebrospinal fluid (CSF) represent the most promising diagnostic tools for synucleinopathies. However, CSF itself contains several compounds that can modulate the aggregation of α-syn in a patient-dependent manner, potentially undermining unoptimized α-syn SAAs and preventing seed quantification. METHODS: In this study, we characterized the inhibitory effect of CSF milieu on detection of α-syn aggregates by means of CSF fractionation, mass spectrometry, immunoassays, transmission electron microscopy, solution nuclear magnetic resonance spectroscopy, a highly accurate and standardized diagnostic SAA, and different in vitro aggregation conditions to evaluate spontaneous aggregation of α-syn. RESULTS: We found the high-molecular weight fraction of CSF (> 100,000 Da) to be highly inhibitory on α-syn aggregation and identified lipoproteins to be the main drivers of this effect. Direct interaction between lipoproteins and monomeric α-syn was not detected by solution nuclear magnetic resonance spectroscopy, on the other hand we observed lipoprotein-α-syn complexes by transmission electron microscopy. These observations are compatible with hypothesizing an interaction between lipoproteins and oligomeric/proto-fibrillary α-syn intermediates. We observed significantly slower amplification of α-syn seeds in PD CSF when lipoproteins were added to the reaction mix of diagnostic SAA. Additionally, we observed a decreased inhibition capacity of CSF on α-syn aggregation after immunodepleting ApoA1 and ApoE. Finally, we observed that CSF ApoA1 and ApoE levels significantly correlated with SAA kinetic parameters in n = 31 SAA-negative control CSF samples spiked with preformed α-syn aggregates. CONCLUSIONS: Our results describe a novel interaction between lipoproteins and α-syn aggregates that inhibits the formation of α-syn fibrils and could have relevant implications. Indeed, the donor-specific inhibition of CSF on α-syn aggregation explains the lack of quantitative results from analysis of SAA-derived kinetic parameters to date. Furthermore, our data show that lipoproteins are the main inhibitory components of CSF, suggesting that lipoprotein concentration measurements could be incorporated into data analysis models to eliminate the confounding effects of CSF milieu on α-syn quantification efforts.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/chemistry , Parkinson Disease/diagnosis , Lipoproteins
2.
J Am Chem Soc ; 144(22): 10006-10016, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35617699

ABSTRACT

Multispecific biologics are an emerging class of drugs, in which antibodies and/or proteins designed to bind pharmacological targets are covalently linked or expressed as fusion proteins to increase both therapeutic efficacy and safety. Epitope mapping on the target proteins provides key information to improve the affinity and also to monitor the manufacturing process and drug stability. Solid-state NMR has been here used to identify the pattern of the residues of the programmed cell death ligand 1 (PD-L1) ectodomain that are involved in the interaction with a new multispecific biological drug. This is possible because the large size and the intrinsic flexibility of the complexes are not limiting factors for solid-state NMR.


Subject(s)
Biological Products , Antibodies , Epitope Mapping , Magnetic Resonance Spectroscopy , Proteins/chemistry
3.
J Med Chem ; 64(21): 16020-16045, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34670084

ABSTRACT

The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/immunology , Neoplasms/pathology , Small Molecule Libraries/pharmacology , Triazines/pharmacology , Calorimetry, Differential Scanning , Cell Line, Tumor , Coculture Techniques , Humans , Immune Checkpoint Inhibitors/chemistry , Models, Molecular , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Triazines/chemistry
4.
Anal Chem ; 93(32): 11208-11214, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34339178

ABSTRACT

Biocompatible hydrogels for tissue regeneration/replacement and drug release with specific architectures can be obtained by three-dimensional bioprinting techniques. The preservation of the higher order structure of the proteins embedded in the hydrogels as drugs or modulators is critical for their biological activity. Solution nuclear magnetic resonance (NMR) experiments are currently used to investigate the higher order structure of biotherapeutics in comparability, similarity, and stability studies. However, the size of pores in the gel, protein-matrix interactions, and the size of the embedded proteins often prevent the use of this methodology. The recent advancements of solid-state NMR allow for the comparison of the higher order structure of the matrix-embedded and free isotopically enriched proteins, allowing for the evaluation of the functionality of the material in several steps of hydrogel development. Moreover, the structural information at atomic detail on the matrix-protein interactions paves the way for a structure-based design of these biomaterials.


Subject(s)
Bioprinting , Drug Liberation , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
5.
Chem Commun (Camb) ; 57(64): 7910-7913, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34278402

ABSTRACT

Structural data on the SARS-CoV-2 main protease in complex with a zinc-containing organic inhibitor are already present in the literature and gave hints on the presence of a zinc binding site involving the catalytically relevant cysteine and histidine residues. In this paper, the structural basis of ionic zinc binding to the SARS-CoV-2 main protease has been elucidated by X-ray crystallography. The zinc binding affinity and its ability to inhibit the SARS-CoV-2 main protease have been investigated. These findings provide solid ground for the design of potent and selective metal-conjugated inhibitors of the SARS-CoV-2 main protease.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , SARS-CoV-2/enzymology , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , Zinc/metabolism
6.
Eur J Pharmacol ; 897: 173936, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33581134

ABSTRACT

Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzylamines/pharmacology , Brain Neoplasms/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , Cyclams/pharmacology , Glioblastoma/drug therapy , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, CXCR4/antagonists & inhibitors , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Neurogenesis/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , Spheroids, Cellular , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
iScience ; 23(6): 101250, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32629615

ABSTRACT

The Tn antigen is a well-known tumor-associated carbohydrate determinant, often incorporated in glycopeptides to develop cancer vaccines. Herein, four copies of a conformationally constrained mimetic of the antigen TnThr (GalNAc-Thr) were conjugated to the adjuvant CRM197, a protein licensed for human use. The resulting vaccine candidate, mime[4]CRM elicited a robust immune response in a triple-negative breast cancer mouse model, correlated with high frequency of CD4+ T cells and low frequency of M2-type macrophages, which reduces tumor progression and lung metastasis growth. Mime[4]CRM-mediated activation of human dendritic cells is reported, and the proliferation of mime[4]CRM-specific T cells, in cancer tissue and peripheral blood of patients with breast cancer, is demonstrated. The locked conformation of the TnThr mimetic and a proper presentation on the surface of CRM197 may explain the binding of the conjugate to the anti-Tn antibody Tn218 and its efficacy to fight cancer cells in mice.

8.
J Org Chem ; 85(15): 10022-10034, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32615762

ABSTRACT

Cyclocarbonylative Sonogashira reactions of ortho-ethynylbenzamides have been investigated. The process is carried out under CO pressure, in the presence of a very small amount of PdCl2(PPh3)2 (0.4 mol %) as a catalytic precursor and without the need for a Cu salt as the co-catalyst. 2-Ethynylbenzamide reacted successfully with iodoarenes bearing electron-withdrawing and electron-donating groups, giving rise to different classes of compounds depending on the solvent used. On the contrary, N-(4-chlorophenyl)-2-ethynylbenzamide afforded exclusively polyfunctionalized isoindolinones with high stereoselectivity toward (E) isomers.

9.
ACS Med Chem Lett ; 11(5): 1047-1053, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435424

ABSTRACT

Protein-protein interactions (PPIs) contribute to the onset and/or progression of several diseases, especially cancer, and this discovery has paved the way for considering disruption of the PPIs as an attractive anti-tumor strategy. In this regard, simple and efficient biophysical methods for detecting the interaction of the inhibitors with the protein counterpart are still in high demand. Herein, we describe a convenient NMR method for the screening of putative PPI inhibitors based on the use of "hot peptides" (HOPPI-NMR). As a case study, HOPPI-NMR was successful applied to the well-known p53/MDM2 system. Our outcomes highlight the main advantages of the method, including the use of a small amount of unlabeled proteins, the minimization of the risk of protein aggregation, and the ability to identify weak binders. The last leaves open the possibility for application of HOPPI-NMR in tandem with fragment-based drug discovery as a valid strategy for the identification of novel chemotypes acting as PPI inhibitors.

10.
Chemphyschem ; 21(9): 863-869, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32092218

ABSTRACT

Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.


Subject(s)
Proteins/chemistry , Sulfhydryl Compounds/chemistry , Catalysis , Cysteine/chemistry , Lanthanoid Series Elements/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Photochemical Processes , Pyridines/chemistry
11.
Chem Sci ; 11(47): 12662-12670, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-34094460

ABSTRACT

Two orthogonal, metal free click reactions, enabled to glycosylate ubiquitin and its mutant A28C forming two protein scaffolds with high affinity for BambL, a lectin from the human pathogen Burkholderia ambifaria. A new fucoside analogue, with high affinity with BambL, firstly synthetized and co-crystallized with the protein target, provided the insights for sugar determinants grafting onto ubiquitin. Three ubiquitin-based glycosides were thus assembled. Fuc-Ub, presented several copies of the fucoside analogue, with proper geometry for multivalent effect; Rha-A28C, displayed one thio-rhamnose, known for its ability to tuning the immunological response; finally, Fuc-Rha-A28C, included both multiple fucoside analogs and the rhamnose residue. Fuc-Ub and Fuc-Rha-A28C ligands proved high affinity for BambL and unprecedented immune modulatory properties towards macrophages activation.

12.
Nucleic Acids Res ; 47(18): 9950-9966, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504744

ABSTRACT

HMGB1 is a ubiquitous non-histone protein, which biological effects depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription and telomere maintenance. HMGB1 has been reported to bind preferentially to bent DNA as well as to noncanonical DNA structures like 4-way junctions and, more recently, to G-quadruplexes. These are four-stranded conformations of nucleic acids involved in important cellular processes, including telomere maintenance. In this frame, G-quadruplex recognition by specific proteins represents a key event to modulate physiological or pathological pathways. Herein, to get insights into the telomeric G-quadruplex DNA recognition by HMGB1, we performed detailed biophysical studies complemented with biological analyses. The obtained results provided information about the molecular determinants for the interaction and showed that the structural variability of human telomeric G-quadruplex DNA may have significant implications in HMGB1 recognition. The biological data identified HMGB1 as a telomere-associated protein in both telomerase-positive and -negative tumor cells and showed that HMGB1 gene silencing in such cells induces telomere DNA damage foci. Altogether, these findings provide a deeper understanding of telomeric G-quadruplex recognition by HMGB1 and suggest that this protein could actually represent a new target for cancer therapy.


Subject(s)
G-Quadruplexes , HMGB1 Protein/genetics , Nucleic Acid Conformation , Telomere/genetics , DNA/chemistry , DNA/genetics , Escherichia coli/genetics , HMGB1 Protein/chemistry , Humans , Telomerase/chemistry , Telomerase/genetics , Telomere/chemistry
13.
NPJ Vaccines ; 4: 20, 2019.
Article in English | MEDLINE | ID: mdl-31149351

ABSTRACT

The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the regions of the protein that are mainly affected by the presence of the inorganic matrix. l-Asparaginase from E. coli has been used as a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.

14.
J Biol Inorg Chem ; 24(1): 91-101, 2019 02.
Article in English | MEDLINE | ID: mdl-30470900

ABSTRACT

Partial symmetry, i.e., the presence of more than one molecule in the asymmetric unit of a crystal, is a relatively rare phenomenon in small-molecule crystallography, but is quite common in protein crystallography, where it is typically known as non-crystallographic symmetry (NCS). Several papers in literature propose molecular determinants such as crystal contacts, thermal factors, or TLS parameters as an explanation for the phenomenon of intrinsic asymmetry among molecules that are in principle equivalent. Nevertheless, are all of the above determinants the cause or are they rather the effect? In the general frame of the NCS often observed in crystals of biomolecules, this paper deals with nickel(II)-substituted human carbonic anhydrase(II) (hCAII) and its SAD structure determination at the nickel edge. The structure revealed two non-equivalent molecules in the asymmetric unit, the presence of a secondary nickel-binding site at the N-terminus of both molecules (which had never been found before in the nickel-substituted enzyme) and two different coordination geometries of the active site nickel (hexa-coordinated in one molecule and mainly penta-coordinated in the other). The above-mentioned standard molecular crystallographic determinants of this asymmetry are analyzed and presented in detail for this particular case. From these considerations, we speculate on the existence of a fundamental, although yet unknown, common cause for the partial symmetry that is so often encountered in X-ray structures of biomolecules.


Subject(s)
Carbonic Anhydrase II/chemistry , Nickel/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation
15.
Chemistry ; 25(8): 1984-1991, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30462348

ABSTRACT

Resonance assignment and structural characterization of pharmacologically relevant proteins promise to improve understanding and safety of these proteins by rational design. However, the PEG coating that is used to evade the immune system also causes these molecules to "evade" the standard structural biology methodologies. We here demonstrate that it is possible to obtain the resonance assignment and a reliable structural model of large PEGylated proteins through an integrated approach encompassing NMR and X-ray crystallography.


Subject(s)
Asparaginase , Asparaginase/chemistry , Asparaginase/metabolism , Coated Materials, Biocompatible , Magnetic Resonance Spectroscopy/methods , Polyethylene Glycols , Protein Multimerization
16.
Biophys J ; 116(2): 239-247, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30580921

ABSTRACT

FlowNMR has the aim of continuously monitoring processes that occur in conditions that are not compatible with being carried out within a closed tube. However, it is sample intensive and not suitable for samples, such as proteins or living cells, that are often available in limited volumes and possibly low concentrations. We here propose a dialysis-based modification of a commercial flowNMR setup that allows for recycling the medium while confining the sample (proteins and cells) within the active volume of the tube. This approach is demonstrated in the specific cases of in-cell NMR and protein-based ligand studies.


Subject(s)
Batch Cell Culture Techniques/methods , Bioreactors , Magnetic Resonance Spectroscopy/methods , Batch Cell Culture Techniques/instrumentation , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy/instrumentation , Protein Binding , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/metabolism
17.
J Struct Biol ; 206(1): 99-109, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30502494

ABSTRACT

Solid state NMR (SSNMR) has earned a substantial success in the characterization of paramagnetic systems over the last decades. Nowadays, the resolution and sensitivity of solid state NMR in biological molecules has improved significantly and these advancements can be translated into the study of paramagnetic biomolecules. However, the electronic properties of different metal centers affect the quality of their SSNMR spectra differently, and not all systems turn out to be equally easy to approach by this technique. In this review we will try to give an overview of the properties of different paramagnetic centers and how they can be used to increase the chances of experimental success.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metalloproteins/chemistry , Metals/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Organometallic Compounds/chemistry , Copper/chemistry , Iron/chemistry , Models, Molecular , Nickel/chemistry , Protein Conformation
18.
Nanoscale ; 10(42): 19720-19732, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30256371

ABSTRACT

We describe a simple method to prepare water dispersible core-shell CdSe/ZnS quantum dots (QDs) 1 by capping QDs with a new thiol-containing heterobifunctional dicarboxylic ligand 4 (DHLA-EDADA). This ligand, obtained on a gram scale through a few synthetic steps, provides a compact layer on the QDs, whose hydrodynamic size in H2O is 15 nm ± 3 nm. The colloidal stability is dramatically enhanced with respect to the well-known (±) α-lipoic acid (DHLA). The ligand affinity towards QDs and the water dispersibility of nanocrystals 1 are addressed by the dithiol groups of DHLA, which chelate the zinc of the shell, and by the dicarboxylic groups of the ethylenediamine-N,N-diacetic acid (EDADA) residue, respectively. The effects of pH, buffer solutions, and biological medium on the stability of QDs 1 were assessed by monitoring the photoluminescence (PL) and hydrodynamic size over time. Highly fluorescent QD dispersions, stable over extended periods of time and over broad pH ranges and buffer types, were obtained. Furthermore, we show that the DHLA-EDADA ligand 4 also endows QDs with functional groups suitable for further conjugation and for metal ion detection. As a case study to illustrate the potential of our approach, we report the preparation and characterization of a highly luminescent orange light emitting polymer-QD 1 composite film.

19.
Chemistry ; 24(71): 18981-18987, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30252969

ABSTRACT

Protein glycosylation is the most complex post-translational modification process. More than 50 % of human cells proteins are glycosylated, whereas bacteria such as E. coli do not have this modification machinery. Indeed, the carbohydrate residues in natural proteins affect their folding, immunogenicity, and stability toward proteases, besides controlling biological properties and activities. It is therefore important to introduce such structural modification in bioengineered proteins lacking the presence of carbohydrate residues. This is not trivial as it requires reagents and conditions compatible with the protein's stability and reactivity. This work reports on the introduction of lactose moieties in two natural proteins, namely ubiquitin (Ub) and l-asparaginase II (ANSII). The synthetic route employed is based on the sulfur(VI) fluoride exchange (SuFEx) coupling of a lactose tethered arylfluorosulfate (Lact-Ar-OSO2 F) with the ϵ-NH2 group of lysine residues of the proteins. This metal-free click SuFEx reaction relies on the properties of the fluorosulfate employed, which is easily prepared in multigram scale from available precursors and reacts chemoselectively with the ϵ-NH2 group of lysine residues under mild conditions. Thus, iterative couplings of Lact-Ar-OSO2 F to Ub and ANSII, afforded multiple glycosylations of these proteins so that up to three and four Lact-Ar-OSO2 groups were introduced in Ub and ANSII, respectively, via the formation of a sulfamoyl (OSO2 -NH) linkage.

20.
J Med Chem ; 61(11): 4791-4809, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775303

ABSTRACT

In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5ß1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5ß1/αvß3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5ß1/αvß3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5ß1 integrin.


Subject(s)
Glioblastoma/drug therapy , Glioblastoma/metabolism , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/metabolism , Molecular Targeted Therapy/methods , Oligopeptides/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , Cell Line, Tumor , Integrin alpha5beta1/antagonists & inhibitors , Integrin alphaVbeta3/antagonists & inhibitors , Mice , Models, Molecular , Peptidomimetics/pharmacology , Protein Conformation , Proto-Oncogene Proteins c-mdm2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...