Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36234191

ABSTRACT

Research activities in materials science typically range from basic and curiosity-motivated research to that which is applications-oriented, and the well-known Materials Science paradigm is usually followed: Processing → Microstructure → Properties → Performance [...].

2.
Materials (Basel) ; 14(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34683615

ABSTRACT

The design of processing routes involving the presence of the liquid phase is mainly associated with the knowledge of its surface and transport properties. Despite this need, due to experimental difficulties related to high temperature measurements of metallic melts, for many alloy systems neither thermodynamic nor thermophysical properties data are available. A good example of a system lacking these datasets is the Ir-Si system, although over the last fifty years, the structures and properties of its solid phases have been widely investigated. To compensate the missing data, the Gibbs free energy of mixing of the Ir-Si liquid phase was calculated combining the model predicted values for the enthalpy and entropy of mixing using Miedema's model and the free volume theory, respectively. Subsequently, in the framework of statistical mechanics and thermodynamics, the surface properties were calculated using the quasi-chemical approximation (QCA) for the regular solution, while to obtain the viscosity, the Moelwyn-Hughes (MH) and Terzieff models were applied. Subsequently, the predicted values of the abovementioned thermophysical properties were used to model the non-reactive infiltration isotherm of Ir-Si (eutectic)/SiC system.

3.
Materials (Basel) ; 14(13)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34279318

ABSTRACT

To properly design and optimize liquid-assisted processes, such as reactive infiltration for fabricating lightweight and corrosion resistant SiC/TiSi2 composites, the extensive knowledge about the interfacial phenomena taking place when liquid Si-rich Si-Ti alloys are in contact with glassy carbon (GC) is of primary importance. To this end, the wettability of GC by two different Si-rich Si-Ti alloys was investigated for the first time by both the sessile and pendant drop methods at T = 1450 °C. The results obtained, in terms of contact angle values, spreading kinetics, reactivity, and developed interface microstructures, were compared with experimental observations previously obtained for the liquid Si-rich Si-Ti eutectics processed under the same operating conditions. As the main outcome, a different Si content did not seem to affect the final contact angle values. Contrarily, the final developed microstructure at the interface and the spreading kinetics were observed as weakly dependent on the composition. From a practical point of view, Si-Ti alloy compositions with a Si content falling in the simple eutectic region of the Si-Ti phase diagram might be potentially used as infiltrating materials of C- and SiC-based composites.

4.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155942

ABSTRACT

To succeed in the design and optimization of liquid-assisted processes such as reactive infiltration for the fabrication of tailored refractory SiC/ZrSi2 composites, the interfacial phenomena that occur when Si-rich Si-Zr alloys are in contact with glassy carbon (GC) were investigated for the first time by the sessile drop method at T = 1450 °C. Specifically, two different Si-rich Si-Zr alloys were selected, and the obtained results in terms of wettability, spreading kinetics, reactivity, and developed interface microstructures were compared with experimental observations that were previously obtained for the liquid Si-rich, Si-Zr, near-eutectic composition (i.e., Si-10 at.%Zr) that was processed under the same operating conditions. The increase of the Si content only weakly affected the overall phenomena that were observed at the interface. From the practical point of view, this means that even Si-Zr alloys with a higher Si content, with respect to the near eutectic alloy, may be potentially used as infiltrant materials.

5.
Materials (Basel) ; 13(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878174

ABSTRACT

SiC is a material with excellent mechanical and thermal properties but with a high production cost. Obtaining SiC by reactive infiltration is an attractive method with a much lower cost than the traditional sintering process. However, the reactive infiltration process presents a serious problem, which is the high residual silicon content, which decreases its applicability. The replacement of silicon with silicides is a widely used alternative. The present investigation shows the good mechanical properties of the SiC-IrSi3 composite material obtained by reactive infiltration of SiC-C preforms with Ir-Si alloys. The thermomechanical analysis shows a high compatibility of silicide with SiC. The presence of the silicide shows a substantial improvement against the oxidation of the SiC-Si composites.

6.
J Phys Chem Lett ; 9(14): 3850-3855, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29939752

ABSTRACT

Integration of graphene into electronic circuits through its joining with conventional metal electrodes (i.e., gold) appears to be one of the main technological challenges nowadays. To gain insight into this junction, we have studied the physicochemical interactions between SiC-supported graphene and a drop of molten gold. Using appropriate high-temperature experimental conditions, we perform wetting experiments and determine contact angles for gold drops supported on graphene epitaxially grown on 4H-SiC. The properties of the metal/graphene interface are analyzed using a wide variety of characterization techniques, along with computational simulations based on density functional theory. In contrast with the established literature, our outcomes clearly show that graphene is translucent in the gold/graphene/SiC interface, and therefore its integration into electronic circuits primarily depends on the right choice of the support to produce favorable wetting interactions with liquid gold.

7.
J Chem Phys ; 140(21): 214704, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24908032

ABSTRACT

In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

SELECTION OF CITATIONS
SEARCH DETAIL
...