Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Talanta ; 276: 126271, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761663

ABSTRACT

Near-infrared (NIR) spectroscopy is a well-established analytical technique that has been used in many applications over the years. Due to the advancements in the semiconductor industry, NIR instruments have evolved from benchtop instruments to miniaturised portable devices. The miniaturised NIR instruments have gained more interest in recent years because of the fast and robust measurements they provide with almost no sample pretreatments. However, due to the very different configurations and characteristics of these instruments, they need a dedicated optimization of the measurement conditions, which is crucial for obtaining reliable results. To comprehensively grasp the capabilities and potentials offered by these sensors, it is imperative to examine errors that can affect the raw data, which is a facet frequently overlooked. In this study, measurement error covariance and correlation matrices were calculated and then visually inspected to gain insight into the error structures associated with the devices, and to find the optimal preprocessing technique that may result in the improvement of the models built. This strategy was applied to the classification of sweet and bitter almonds, which were measured with the three portable low-cost NIR devices (SCiO, FlameNIR+ and NeoSpectra Micro Development Kit) after removing the shelled, since their classification is of utmost importance for the almond industry. The results showed that bitter almonds can be classified from sweet almonds using any of the instruments after selecting the optimal preprocessing, obtained through inspection of covariance and correlation matrices. Measurements obtained with FlameNIR + device provided the best classification models with an accuracy of 98 %. The chosen strategy provides new insight into the performance characterization of the fast-growing miniaturised NIR instruments.

2.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138488

ABSTRACT

This study focuses on exploring and understanding measurement errors in analytical procedures involving miniaturized near-infrared instruments. Despite recent spreading in different application fields, there remains a lack of emphasis on the accuracy and reliability of these devices, which is a critical concern for accurate scientific outcomes. The study investigates multivariate measurement errors, revealing their complex nature and the influence that preprocessing techniques can have. The research introduces a possible workflow for practical error analysis in experiments involving diverse samples and instruments. Notably, it investigates how sample characteristics impact errors in the case of solid pills and tablets, typical pharmaceutical samples. ASCA was used for understanding critical instrumental factors and the potential and limitations of the method in the current application were discussed. The joint interpretation of multivariate error matrices and their resume through image histograms and K index are discussed in order to evaluate the impact of common preprocessing methods and to assess their influence on signals.

3.
Foods ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372503

ABSTRACT

The primary focus of research in food production revolves around ensuring food quality and safety [...].

4.
Foods ; 12(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36900479

ABSTRACT

The variability in grape ripening is associated with the fact that each grape berry undergoes its own biochemical processes. Traditional viticulture manages this by averaging the physicochemical values of hundreds of grapes to make decisions. However, to obtain accurate results it is necessary to evaluate the different sources of variability, so exhaustive sampling is essential. In this article, the factors "grape maturity over time" and "position of the grape" (both in the grapevine and in the bunch/cluster) were considered and studied by analyzing the grapes with a portable ATR-FTIR instrument and evaluating the spectra obtained with ANOVA-simultaneous component analysis (ASCA). Ripeness over time was the main factor affecting the characteristics of the grapes. Position in the vine and in the bunch (in that order) were also significantly important, and their effect on the grapes evolves over time. In addition, it was also possible to predict basic oenological parameters (TSS and pH with errors of 0.3 °Brix and 0.7, respectively). Finally, a quality control chart was built based on the spectra obtained in the optimal state of ripening, which could be used to decide which grapes are suitable for harvest.

5.
Materials (Basel) ; 16(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36902936

ABSTRACT

To correctly manage a collection of historical silks, it is important to detect if the yarn has been originally subjected to degumming. This process is generally applied to eliminate sericin; the obtained fiber is named soft silk, in contrast with hard silk which is unprocessed. The distinction between hard and soft silk gives both historical information and useful indications for informed conservation. With this aim, 32 samples of silk textiles from traditional Japanese samurai armors (15th-20th century) were characterized in a non-invasive way. ATR-FTIR spectroscopy has been previously used to detect hard silk, but data interpretation is challenging. To overcome this difficulty, an innovative analytical protocol based on external reflection FTIR (ER-FTIR) spectroscopy was employed, coupled with spectral deconvolution and multivariate data analysis. The ER-FTIR technique is rapid, portable, and widely employed in the cultural heritage field, but rarely applied to the study of textiles. The ER-FTIR band assignment for silk was discussed for the first time. Then, the evaluation of the OH stretching signals allowed for a reliable distinction between hard and soft silk. Such an innovative point of view, which exploits a "weakness" of FTIR spectroscopy-the strong absorption from water molecules-to indirectly obtain the results, can have industrial applications too.

6.
Foods ; 12(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36766022

ABSTRACT

Alongside the increasing proofs of efficacy of miniaturized NIR instruments in food-related scenarios, it is progressively growing the number of end-users, even incentivized by the low-cost of the sensors. While attention is paid to the analytical protocol-from sampling to data collection, up to the data processing, the importance of error investigation in raw data is generally underestimated. Understanding the sources and the structure of uncertainty related to the raw data improves the quality of measurements and suggests the correct planning of the experiments, as well as helps in chemometric model development. The goal of chemometric modeling is to separate information from noise; therefore, a description of the nature of measurement error structure is necessary. Among the different approaches, we present the study of the Error Covariance Matrices (ECMs) and their decomposition in a bilinear structure as a powerful method to study the main sources of variability when using miniaturized NIR sensors in the actual way of use. Granulated and lump sugar samples were chosen as the case study and analyzed with two miniaturized spectrometers working in the NIR regions around 1350-2550 nm and 900-1750 nm, respectively, in dispersive reflectance mode. Results show that having some insights on multivariate measurement errors associated with spectra could be interesting in paving the way for several applications.

7.
Anal Chim Acta ; 1281: 341902, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38783741

ABSTRACT

BACKGROUND: The implementation of process analytical technologies (PAT) has gained attention since 2004 when its formal introduction through the U.S. Food and Drug Administration was introduced. Manufacturers that need to evaluate the employment of new monitoring systems could face different challenges: identification of suitable sensors, verification of data meaning, evaluation of several statistical strategies to obtain insights about data and achieve process understanding and finally, the actual possibilities for monitoring. Kefir fermentations were chosen as an example because of the chemical and physical transformations that occurred during the process, which could be common to several other fermentation processes. In order to pave the way for monitoring establish the information contained in the data and find the right tools for extracting them is of extreme importance. Strategies to identify different experimental conditions in the spectra acquired with a miniaturized NIR (1350-2550 nm) during process occurrence were addressed. RESULTS: The study aims to offer insights into good practices and steps to pave the way for process monitoring with handheld NIR data. The main aspects of interest for batch processes in preliminary evaluations were investigated and discussed. On the one hand, process understanding and, on the other, the possibilities for process monitoring and endpoint determination were examined. The combination of different statistical tools allowed the extraction of information from the data and the identification of the link between them and the chemical and physical changes during the process. In addition, insights into the spectra characteristics in the studied spectroscopic range for kefir fermentation were reported. SIGNIFICANCE: The capabilities for miniaturized NIR spectra to represent and statistical strategies to characterize different experimental conditions in a real case fermentation occurrence were proved. The strengths and limitations of some of the common approaches to catch changes in fermentation condition were highlighted. For the various statistical approaches, the chances offered in the research and development stages and to set the scene for monitoring and end-point detection were explored.

8.
Foods ; 11(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36360137

ABSTRACT

Insects have been a food source for humans for millennia, and they are actively consumed in various parts of the world. This paper aims to ascertain the feasibility of portable near-infrared (NIR) spectroscopy as a reliable and fast candidate for the classification of insect powder samples and the prediction of their major components. Commercially-available insect powder samples were analyzed using two miniaturized NIR instruments. The samples were analyzed as they are and after grinding, to study the effect of the granulometry on the spectroscopic analyses. A homemade sample holder was designed and optimized for making reliable spectroscopic measurements. Classification was then performed using three classification strategies, and partial least squares (PLS) regression was used to predict the macronutrients. The results obtained confirmed that both spectroscopic sensors were able to classify insect powder samples and predict macronutrients with an adequate detection limit.

9.
Anal Chim Acta ; 1211: 339900, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35589230

ABSTRACT

The use of miniaturized NIR spectrometers is spreading over the scientific literature with a particular focus on developing methods as rapid and easy-to-use as possible and following the philosophy of green analytical chemistry. Several applications and studies are typically presented by comparing results obtained with benchtop instrumentation even when the analytical strategies are substantially different. Indeed, analytical applications that include the use of miniaturized instrumentation are subject to several sources of variability that need to be known at the time of method development. In this study, different statistical strategies were employed to understand the features and limitations of handheld NIR instruments. Because of the high interest in real applications, a common type of hygroscopic powder sample was selected: forages. A step-by-step methodology is presented to statistically address the different issues to consider in order to obtain realistic models when using miniaturized NIR spectrometers. We demonstrate how a careful evaluation of the sources of variability related to an experiment can help in the understanding of the system under study in order to obtain a more reliable development of the method and consciously choose the analytical parameters and strategies of analysis. The results were also compared with those achieved on the same dataset from a benchtop system in order to provide references analogous with those in the literature.


Subject(s)
Research Design , Spectroscopy, Near-Infrared , Powders , Spectroscopy, Near-Infrared/methods
10.
Talanta ; 246: 123473, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35483318

ABSTRACT

Systematic errors in the calix [4] pyrrole-based potentiometric detection of creatinine have been observed in heavy smokers. This work further characterizes the interactions between the nicotinium cation and the cavitand as well as the resulting interference produced during the potentiometric detection. It is found that the nicotinium cation binds the electronic rich aromatic cavity defined by the pyrrole rings of the receptor's cone conformation with an estimated binding constant higher than 10-4 M-1 in methylene chloride. On the other hand, the creatininium cation is preferentially included in the hydrophobic aromatic cavity of the ionophore by establishing hydrogen bond interactions with the pyrrole NHs groups. Potentiometric calibrations confirmed the detection of the nicotinium cation at neutral and acidic pH, respectively. Due to the lower pka of creatinine, a methodology to quantify creatinine in presence of nicotine by using an array of three sensors at two pH values is proposed. A partial least squares regression was performed and reported recoveries of 103% with a standard deviation of 20%. The improved determination of creatinine was therefore discussed. This approach represents a step forward in the development of effective approaches to improve the measurement of creatinine in decentralized settings.


Subject(s)
Nicotine , Pyrroles , Cations , Creatinine , Potentiometry/methods
11.
Crit Rev Anal Chem ; : 1-33, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35286178

ABSTRACT

Miniaturized NIR instruments have been increasingly used in the last years, and they have become useful tools for many applications on a broad variety of samples. This review focuses on miniaturized NIR instruments from an analytical point of view, to give an overview of the analytical strategies used in order to help the reader to set up their own analytical methods, from the sampling to the data analysis. It highlights the uses of these instruments, providing a critical discussion including current and future trends.

12.
Foods ; 10(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34829136

ABSTRACT

Miniaturised near-infrared (NIR) instruments have been increasingly used in the last few years, and they have become useful tools for many applications on different types of samples. The market already offers a wide variety of these instruments, each one having specific requirements for the correct acquisition of the instrumental signal. This paper presents the development and optimisation of different measuring strategies for two miniaturised NIR instruments in order to find the best measuring conditions for the rapid and low-cost analysis of olive oils. The developed strategies have been applied to the classification of different samples of olive oils, obtaining good results in all cases.

13.
Foods ; 10(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925960

ABSTRACT

In order to obtain high-quality products and gain a competitive advantage, food producers seek improved manufacturing processes, particularly when physicochemical and sensory properties add significant value to the product [...].

14.
Foods ; 9(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785190

ABSTRACT

The miniaturisation of analytical devices, reduction of analytical data acquisition time, or the reduction of waste generation throughout the analytical process are important requirements of modern analytical chemistry, and in particular of green analytical chemistry. Green analytical chemistry has fostered the development of a new generation of miniaturized near-infrared spectroscopy (NIR) spectrometric systems. However, one of the drawbacks of these systems is the need for a compromise between the performance parameters (accuracy and sensitivity) and the aforementioned requirements of green analytical chemistry. In this paper, we evaluated the capabilities of two recently developed portable NIR instruments (SCiO and NeoSpectra) to achieve a rapid, simple and low-cost quantitative determination of commercial milk macronutrients. Commercial milk samples from Italy, Switzerland and Spain were chosen, covering the maximum range of variability in protein, carbohydrate and fat content, and multivariate calibration was used to correlate the recorded spectra with the macronutrient content of milk. Both SCiO and NeoSpectra can provide a fast and reliable analysis of fats in commercial milk, and they are able to correctly classify milk according to fat level. SCiO can also provide predictions of protein content and classification according to presence or absence of lactose.

15.
Talanta ; 179: 100-106, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29310208

ABSTRACT

Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) is a powerful method to determine the elemental composition of solid-state samples as it combines the high sensitivity and isotope selectivity of ICP-MS detection and the simplicity of laser ablation sampling. This technique enables rapid multiple sampling of the analysed material, such as needed for mapping or in-depth profiling applications. However, the duration of these measurements is practically restricted by the time taken for the particle to be transported from the sampling point to the ICP torch. The ablation cell, i.e. the sample holder, should combine high removal rate, high efficiency (i.e. complete transport of the ablated material) and reduced memory effects. These goals may be achieved by carefully designing the geometry of the cell and its gas flow patterns. A new cell design which enables a homogeneous wahout time of around 210 ms from a cylindrical chamber with 70 mm diameter is introduced in this paper. Washout time was determined as the time for the transient signal of 238U from a NIST610 glass standard to fall to 10% of its peak value. This result is achieved by combining a diffused, cylindrical flow pattern with an extraction tube coaxial with the laser beam and fixed to the laser assembly which enables the sampling point to be constantly positioned on the ablation spot. The lower part of the cell is mounted on the x,y stage for sample movement: the cell sealing is warranted by a viscous film junction between the lower and upper cell parts. Optimisation and performances of the apparatus are discussed in detail and performances are compared to existing designs.

16.
Food Chem ; 166: 346-351, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25053066

ABSTRACT

This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation.


Subject(s)
Oleic Acid/chemistry , Plant Oils/chemistry , Starch/chemistry , Oxidation-Reduction , Sunflower Oil
17.
Anal Chem ; 86(13): 6654-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24911112

ABSTRACT

We propose here a novel voltammetric method for the determination of platinum at trace levels. The method is based on the interference that platinum generates on the anodic stripping signal of tin acidic solutions: in appropriate conditions platinum uses the intermediate formation of tin(II) ions, taking place during the tin cathodic reduction, to reduce itself and to form mixed Pt(II)-Sn(II) chloro-complexes. From the analysis of the anodic stripping plots obtained after subsequent additions of tin in a Pt-containing solution, it is possible to quantify accurately and precisely the Pt concentration from 3 ppb to more than 10 ppm. This novel method is validated for the analysis of Pt in heterogeneous catalysts, but in principle could be extended to other matrixes.

18.
Transfus Apher Sci ; 50(1): 81-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24290783

ABSTRACT

Women are under-represented among blood donors and this difference is particularly strong in Italy. This study explore the reasons for the gender gap using a sample of donors who had stopped donating at least two years previously and analyzing the role of frequency of donation. No significant gender differences emerged between the reasons provided by subjects but Italy was the country with the longest prescribed interval between whole blood donations for women. The gender gap is related to the lengthy interval between successive donations of whole blood and reducing this interval could help increase the proportion of women donors.


Subject(s)
Blood Donors , Sex Factors , Adult , Altruism , Female , Humans , Italy , Male , Middle Aged , Motivation , Surveys and Questionnaires
19.
Transfus Med Hemother ; 40(2): 126-32, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23652779

ABSTRACT

BACKGROUND: Tissue factor (TF), the main activator of blood coagulation, is expressed on platelet surface and, together with procoagulant phospholipids, contributes to the global coagulation potential of these blood components. The present study evaluated, for the first time, the expression of TF on platelet surface during preparation and storage of platelet concentrates (PC) for transfusional use. METHODS: Platelet TF was measured by flow cytometry in healthy donor whole blood (WB) and in pooled buffy-coat-derived PC on the day of preparation and up to 4 days of storage in parallel with classical markers of platelet activation, i.e., fibrinogen, P-selectin, and glycoprotein GPIIb. Data were analyzed according to donor age and blood ABO group. RESULTS: TF was detected on whole blood platelets and was found highest in O donors. Compared to whole blood, platelet surface TF was higher upon PC preparation and further increased during storage. The rise in TF levels positively correlated with the elevations of the other platelet markers. CONCLUSIONS: Our findings show that platelet surface TF is maintained in PC obtained by the pooled buffy coat method. Further studies are warranted to investigate a possible correlation between TF levels and the hemostatic response of the platelet transfusion recipient.

20.
Biofouling ; 28(10): 1107-17, 2012.
Article in English | MEDLINE | ID: mdl-23061484

ABSTRACT

The formation of yeast biofilm on food industry equipment can lead to serious hygiene problems and economic losses due to food spoilage and equipment impairment. This study explored the ability of a sub-lethal concentration of the bulb extract of Muscari comosum to modulate adhesion of Candida albicans and subsequent biofilm development by this fungus. The HPLC profile of the ethanolic bulb extract showed phenolic constituents, which were found to undergo Folin-Ciocalteu reagent reduction. Prior to the adhesion tests, it was shown that up to 4000 mg l(-1) of natural extract did not adversely affect fungal growth nor did it act as a carbon energy source for C. albicans. Mathematical models predicted that 4000 mg l(-1) and 700 mg l(-1) of bulb extract would cause more than 98% reduction in fungal coverage on abiotic surfaces, without killing the planktonic cells. When added to C. albicans biofilm, the natural extract was shown to induce the dispersion of sessile cells in a dose-dependent manner.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Liliaceae/chemistry , Plant Extracts/pharmacology , Adhesiveness , Antifungal Agents/chemistry , Biofilms , Carbon , Food Technology/instrumentation , Molecular Structure , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...