Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Adv Sci (Weinh) ; 11(4): e2305906, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036426

ABSTRACT

Developing greener hydrometallurgical processes implies offering alternatives to conventional solvents used for liquid-liquid extraction (LLE) of metals. In this context, it is proposed to substitute the organic phase by a hydrophobic silica-based porous liquid (PL). Two different sulfonated hollow silica particles (HSPs) are modified with various polyethoxylated fatty amines (EthAs) forming a canopy that provides both the targeted hydrophobicity and liquefying properties. This study shows that these properties can be tuned by varying the number of ethylene oxide units in the EthA: middle-range molecular weight EthAs allow obtaining a liquid at room temperature, while too short or too long EthA leads to solid particles. Viscosity is also impacted by the density and size of the silica spheres: less viscous PLs are obtained with small low-density spheres, while for larger spheres (c.a. 200 nm) the density has a less significant impact on viscosity. According to this approach, hydrophobic PLs are successfully synthesized. When contacted with an aqueous phase, the most hydrophobic PLs obtained allow a subsequent phase separation. Preliminary extraction tests on three rare earth elements have further shown that functionalization of the PL is necessary to observe metal extraction.

2.
Anal Chem ; 94(41): 14151-14158, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36200347

ABSTRACT

One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.


Subject(s)
Bacteriorhodopsins , Cycloparaffins , Carbon , Detergents/chemistry , Lipids , Maleates/chemistry , Polymers/chemistry , Polystyrenes/chemistry
3.
Biomacromolecules ; 21(8): 3459-3467, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32602705

ABSTRACT

Membrane proteins (MPs) need to be extracted from biological membranes and purified in their native state for most structural and functional in vitro investigations. Amphiphilic copolymers, such as amphipols (APols), have emerged as very useful alternatives to detergents for keeping MPs water-soluble under their native form. However, classical APols, such as poly(acrylic acid) (PAA) derivatives, seldom enable direct MP extraction. Poly(styrene maleic anhydride) copolymers (SMAs), which bear aromatic rings as hydrophobic side groups, have been reported to be more effective extracting agents. In order to test the hypothesis of the role of cyclic hydrophobic moieties in membrane solubilization by copolymers, we have prepared PAA derivatives comprising cyclic rather than linear aliphatic side groups (CyclAPols). As references, APol A8-35, SMAs, and diisobutylene maleic acid (DIBMA) were compared with CyclAPols. Using as models the plasma membrane of Escherichia coli and the extraction-resistant purple membrane from Halobacterium salinarum, we show that CyclAPols combine the extraction efficiency of SMAs with the stabilization afforded to MPs by classical APols such as A8-35.


Subject(s)
Cycloparaffins , Polymers , Escherichia coli , Hydrophobic and Hydrophilic Interactions , Membrane Proteins
4.
Sci Rep ; 10(1): 2630, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060341

ABSTRACT

G Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds. We present here the NMR structure of the agonist 12-HHT in its BLT2-bound state and a model of interaction of the ligand with the receptor based on a conformational homology modeling associated with docking simulations. Put into perspective with the data obtained with leukotriene B4, our results illuminate the ligand selectivity of BLT2 and may help define new molecules to modulate the activity of this receptor.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Receptors, Leukotriene B4/agonists , Receptors, Leukotriene B4/metabolism , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Receptors, Leukotriene B4/chemistry
5.
J Nanobiotechnology ; 17(1): 77, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31226993

ABSTRACT

BACKGROUND: The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. RESULTS: We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. CONCLUSIONS: The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell.


Subject(s)
Disulfides/chemistry , Lipids/chemistry , Peptides/chemistry , Pyridines/chemistry , Animals , Cell Survival/drug effects , Cysteine/chemistry , Drug Compounding/methods , Drug Delivery Systems , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry , Mice , Molecular Structure , Optical Imaging/methods , Proof of Concept Study
6.
Biochim Biophys Acta Biomembr ; 1861(2): 466-477, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30444973

ABSTRACT

Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.


Subject(s)
Cell Membrane/ultrastructure , Membrane Proteins/ultrastructure , Microscopy, Electron , Polymers/chemistry , Streptavidin/chemistry , Animals , Biotinylation , Cattle , Electron Transport Complex III/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Models, Molecular , Negative Staining
7.
Vaccine ; 36(45): 6640-6649, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30293763

ABSTRACT

INTRODUCTION: Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS: A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS: Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS: Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/therapeutic use , Chlamydia Infections/prevention & control , Animals , Antibodies, Bacterial/immunology , Chlamydia muridarum/immunology , Chlamydia muridarum/pathogenicity , Female , Mice , Mice, Inbred BALB C
8.
Front Mol Biosci ; 5: 38, 2018.
Article in English | MEDLINE | ID: mdl-29725595

ABSTRACT

We have recently reported on the preparation of a membrane-associated ß-barrel Pore-Forming Aß42 Oligomer (ßPFOAß42). It corresponds to a stable and homogeneous Aß42 oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a ß-barrel arrangement. As a follow-up of this work, we aim to establish ßPFOAß42's relevance in Alzheimer's disease (AD). However, ßPFOAß42 is formed under dodecyl phosphocholine (DPC) micelle conditions-intended to mimic the hydrophobic environment of membranes-which are dynamic. Consequently, dilution of the ßPFOAß42/DPC complex in a detergent-free buffer leads to dispersion of the DPC molecules from the oligomer surface, leaving the oligomer without the hydrophobic micelle belt that stabilizes it. Since dilution is required for any biological test, transfer of ßPFOAß42 from DPC micelles into another hydrophobic biomimetic membrane environment, that remains associated with ßPFOAß42 even under high dilution conditions, is a requisite for the validation of ßPFOAß42 in AD. Here we describe conditions for exchanging DPC micelles with amphipols (APols), which are amphipathic polymers designed to stabilize membrane proteins in aqueous solutions. APols bind in an irreversible but non-covalent manner to the hydrophobic surface of membrane proteins preserving their structure even under extreme dilution conditions. We tested three types of APols with distinct physical-chemical properties and found that the ßPFOAß42/DPC complex can only be trapped in non-ionic APols (NAPols). The characterization of the resulting ßPFOAß42/NAPol complex by biochemical tools and structural biology techniques allowed us to establish that the oligomer structure is maintained even under high dilution. Based on these findings, this work constitutes a first step towards the in vivo validation of ßPFOAß42 in AD.

9.
Biomacromolecules ; 16(12): 3751-61, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26492302

ABSTRACT

Amphipols (APols) are short amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions. In the present study, A8-35, a polyacrylate-based APol, was grafted with hexahistidine tags (His6-tags). The synthesis and characterization of this novel functionalized APol, named HistAPol, are described. Its ability to immobilize MPs on nickel ion-bearing surfaces was tested using two complementary methods, immobilized metal affinity chromatography (IMAC) and surface plasmon resonance (SPR). Compared to a single His6-tag fused at one extremity of a MP, the presence of several His6-tags carried by the APol belt surrounding the transmembrane domain of a MP increases remarkably the affinity of the protein/APol complex for nickel ion-bearing SPR chips, whereas it does not show such a strong effect on an IMAC resin. HistAPol-mediated immobilization, which allows reversibility of the interaction and easy regeneration of the supports and dispenses with any genetic modification of the target protein, provides a novel, promising tool for attaching MPs onto solid supports while stabilizing them.


Subject(s)
Histidine/chemistry , Immobilized Proteins/chemistry , Membrane Proteins/chemistry , Oligopeptides/chemistry , Polymers/chemical synthesis , Propylamines/chemical synthesis , Cations, Divalent , Chromatography, Affinity , Nickel/chemistry , Polymers/chemistry , Propylamines/chemistry , Protein Stability , Solutions , Surface Plasmon Resonance , Water
10.
Int J Mass Spectrom ; 391: 54-61, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26869850

ABSTRACT

Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-ß-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.

11.
J Membr Biol ; 247(9-10): 897-908, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25204390

ABSTRACT

Amphipols are a class of polymeric surfactants that can stabilize membrane proteins in aqueous solutions as compared to detergents. A8-35, the best-characterized amphipol to date, is composed of a polyacrylate backbone with ~35% of the carboxylates free, ~25% grafted with octyl side-chains, and ~40% with isopropyl ones. In aqueous solutions, A8-35 self-organizes into globular particles with a molecular mass of ~40 kDa. The thermal dynamics of A8-35 particles was measured by neutron scattering in the 10-picosecond, 18-picosecond, and 1-nanosecond time-scales on natural abundance and deuterium-labeled molecules, which permitted to separate backbone and side-chain motions. A parallel analysis was performed on molecular dynamics trajectories (Perlmutter et al., Langmuir 27:10523-10537, 2011). Experimental results and simulations converge, from their respective time-scales, to show that A8-35 particles feature a more fluid hydrophobic core, predominantly containing the octyl chains, and a more rigid solvent-exposed surface, made up predominantly of the hydrophilic polymer backbone. The fluidity of the core is comparable to that of the lipid environment around proteins in the center of biological membranes, as also measured by neutron scattering. The biological activity of proteins depends sensitively on molecular dynamics, which itself is strongly dependent on the immediate macromolecular environment. In this context, the characterization of A8-35 particle dynamics constitutes a step toward understanding the effect of amphipols on membrane protein stability and function.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Neutron Diffraction/methods , Polymers/chemistry , Propylamines/chemistry , Surface-Active Agents/chemistry , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Materials Testing , Molecular Conformation , Solubility , Surface Properties , Temperature , Thermodynamics
12.
J Membr Biol ; 247(9-10): 925-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25086771

ABSTRACT

Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.


Subject(s)
Cell Membrane/chemistry , Membrane Proteins/chemistry , Peptide Library , Peptides/chemistry , Protein Interaction Mapping/methods , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/analysis , Protein Binding , Protein Transport , Solubility , Tissue Scaffolds/chemistry
13.
J Membr Biol ; 247(9-10): 1019-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24952466

ABSTRACT

Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EII(mtl), a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EII(mtl), some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EII(mtl) soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EII(mtl) mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EII(mtl) using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Escherichia coli/enzymology , Fluorescein/chemistry , Fractional Precipitation/methods , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/isolation & purification , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/isolation & purification , Polymers/chemistry , Propylamines/chemistry , Surface-Active Agents/chemistry , Escherichia coli Proteins/ultrastructure , Fluorescein/analysis , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Monosaccharide Transport Proteins/ultrastructure , Phosphoenolpyruvate Sugar Phosphotransferase System/ultrastructure , Solubility , Solutions , Specimen Handling/methods , Staining and Labeling
14.
Nucleic Acids Res ; 42(10): e83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24744236

ABSTRACT

Amphipols (APols) are specially designed amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions in the absence of detergent. A8-35, a polyacrylate-based APol, has been grafted with an oligodeoxynucleotide (ODN). The synthesis, purification and properties of the resulting 'OligAPol' have been investigated. Grafting was performed by reacting an ODN carrying an amine-terminated arm with the carboxylates of A8-35. The use of OligAPol for trapping MPs and immobilizing them onto solid supports was tested using bacteriorhodopsin (BR) and the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) as model proteins. BR and OligAPol form water-soluble complexes in which BR remains in its native conformation. Hybridization of the ODN arm with a complementary ODN was not hindered by the assembly of OligAPol into particles, nor by its association with BR. BR/OligAPol and tOmpA/OligAPol complexes could be immobilized onto either magnetic beads or gold nanoparticles grafted with the complementary ODN, as shown by spectroscopic measurements, fluorescence microscopy and the binding of anti-BR and anti-tOmpA antibodies. OligAPols provide a novel, highly versatile approach to tagging MPs, without modifying them chemically nor genetically, for specific, reversible and targetable immobilization, e.g. for nanoscale applications.


Subject(s)
Membrane Proteins/chemistry , Oligodeoxyribonucleotides/chemistry , Polymers/chemistry , Propylamines/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacteriorhodopsins/chemistry , Gold , Immobilized Proteins/chemistry , Metal Nanoparticles , Microspheres , Nucleic Acid Hybridization , Polymers/chemical synthesis , Propylamines/chemical synthesis
15.
J Membr Biol ; 247(9-10): 797-814, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24696186

ABSTRACT

Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Propylamines/chemistry , Staining and Labeling/methods , Surface-Active Agents/chemistry , Water/chemistry , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Polymers/chemical synthesis , Propylamines/chemical synthesis , Solubility , Solutions
16.
J Membr Biol ; 247(9-10): 909-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24652511

ABSTRACT

Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.


Subject(s)
Deuterium Exchange Measurement/methods , Deuterium/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Propylamines/chemistry , Propylamines/chemical synthesis , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Solubility , Solutions , Staining and Labeling/methods , Water/chemistry
17.
J Membr Biol ; 247(9-10): 827-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24676477

ABSTRACT

Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Animals , Artifacts , Humans , Hydrophobic and Hydrophilic Interactions , Solubility , Solutions , Technology Assessment, Biomedical , Water/chemistry
18.
Langmuir ; 28(28): 10372-80, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22712750

ABSTRACT

Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the solution properties of APol "micelles" (in salty buffer) appear surprisingly similar to those of the micelles formed by small, nonpolymeric surfactants, a feature that was not anticipated owing to the polymeric and polydisperse nature of A8-35. The key to the remarkable stability to dilution of A8-35 globules, likely to include also that of MP/APol complexes, lies accordingly in the low value of the critical self-association concentration as compared to that of small amphiphilic analogues.


Subject(s)
Fluorescence Resonance Energy Transfer , Polymers/chemistry , Propylamines/chemistry , Surface-Active Agents/chemistry , Thermodynamics , Adsorption , Air , Molecular Structure , Polymers/chemical synthesis , Propylamines/chemical synthesis , Surface Tension , Water/chemistry
19.
Biopolymers ; 95(12): 811-23, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21638274

ABSTRACT

Amphipols (APols) are amphiphatic polymers that keep membrane proteins (MPs) water-soluble. The best characterized and most widely used APol to date, A8-35, comprises a polyacrylate backbone grafted with octyl- and isopropylamine side chains. The nature of its hydrophilic moieties prevents its use at the slightly acidic pH that is desirable to slow down the rate of amide proton exchange in solution NMR studies. We describe here the synthesis and properties of pH-insensitive APols obtained by replacing isopropyles with taurine. Sulfonated APols (SAPols) can be used to trap MPs in the form of small complexes, to stabilize them, and to keep them water-soluble even at low pH. [(15) N,(1) H]-transverse relaxation-optimized spectroscopy NMR spectra obtained at pH 6.8 of a bacterial outer MP folded in SAPols show that the protein is correctly folded. The spectra have a resolution similar to that achieved with A8-35 and reveal water-exposed amide and indole protons whose resonance peaks are absent at pH 8.0.


Subject(s)
Membrane Proteins/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Sulfones/chemistry , Amides/chemistry , Chemistry/methods , Chromatography/methods , Escherichia coli/metabolism , Halobacterium salinarum/metabolism , Hydrogen-Ion Concentration , Indoles/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical
20.
J Am Chem Soc ; 132(26): 9049-57, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20552979

ABSTRACT

G protein-coupled receptors (GPCRs) are key players in signal recognition and cell communication and are among the most important targets for drug development. Direct structural information on the conformation of GPCR ligands bound to their receptors is scarce. Using a leukotriene receptor, BLT2, expressed under a perdeuterated form in Escherichia coli , purified in milligram amounts, and folded to its native state using amphipols, we have solved, by (1)H NMR, the structure of receptor-bound leukotriene B4 (LTB4). Upon binding, LTB4 adopts a highly constrained seahorse conformation, at variance with the free state, where it explores a wide range of conformations. This structure provides an experimentally determined template of a pro-inflammatory compound for further pharmacological studies. The novel approach used for its determination could prove powerful to investigate ligand binding to GPCRs and membrane proteins in general.


Subject(s)
Leukotriene B4/chemistry , Leukotriene B4/metabolism , Molecular Conformation , Receptors, Leukotriene B4/metabolism , Deuterium/chemistry , Humans , Ligands , Models, Molecular , Protein Binding , Solutions , Substrate Specificity , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...