Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Article in English | MEDLINE | ID: mdl-38640169

ABSTRACT

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


Subject(s)
14-3-3 Proteins , Biomarkers , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , p21-Activated Kinases , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/genetics , 14-3-3 Proteins/blood , Male , p21-Activated Kinases/blood , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Female , Aged , Biomarkers/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Middle Aged , Aged, 80 and over , Prospective Studies , Adult , Mutation
2.
Mol Neurodegener ; 19(1): 5, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229094

ABSTRACT

Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.


Subject(s)
Astrocytes , Neurodegenerative Diseases , Humans , Astrocytes/metabolism , Protein Aggregates , alpha-Synuclein/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism
3.
Biol Trace Elem Res ; 202(1): 246-257, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37086356

ABSTRACT

This study is based on the premise that the application of chemical synthesis strategies to structurally modify commercial drugs by complexation with biometals is a valid procedure to improve their biological effects. Our purpose is to synthesize a compound with greater efficacy than the original drug, able to enhance its antihypertensive and cardiac pharmacological activity. Herein, the structure of the coordination compound of Zn(II) and the antihypertensive drug olmesartan, [Zn(Olme)(H2O)2] (ZnOlme), is presented. After 8 weeks of treatment in SHR male rats, ZnOlme displayed a better blood pressure-lowering activity compared with olmesartan, with a noticeable effect even in the first weeks of treatment, while ZnCl2 showed similar results than the control. ZnOlme also reduced left ventricle (LV) weight and left ventricle/tibia length ratio (LV/TL), posterior wall thickness (PWT), and intraventricular septum in diastole (IVSd) suggesting its potential to prevent LV hypertrophy. Besides, ZnOlme reduced interstitial fibrosis (contents of collagen types I and III, responsible for giving rigidity and promoting vascular elasticity, respectively). The recovery of heart function was also evidenced by fractional shortening (diastolic left ventricular/systolic left ventricular) diameter determinations. Furthermore, ZnOlme increased the antioxidant capacity and prevented cardiac oxidative stress: it enhanced the reduction of reactive oxygen species generation, exerted a significant decrease in lipid peroxidation and enhanced glutathione contents in heart tissues compared to the control, Zn, and olmesartan treatments. Our results demonstrate that continuous oral administration of ZnOlme causes a better antihypertensive effect and grants enhancement of cardioprotection through antioxidant activity, in combination with hemodynamic improvement.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Rats, Inbred SHR , Blood Pressure , Hypertrophy, Left Ventricular/drug therapy , Hypertrophy, Left Ventricular/prevention & control , Zinc/pharmacology , Zinc/therapeutic use
4.
J Trace Elem Med Biol ; 81: 127327, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890445

ABSTRACT

BACKGROUND: the antihypertensive drug α-methyldopa (MD) stands as one of the extensively used medications for managing hypertension during pregnancy. Zinc deprivation has been associated with many diseases. In this context, the synthesis of a Zn coordination complex [Zn(MD)(OH)(H2O)2]·H2O (ZnMD) provide a promising alternative pathway to improve the biological properties of MD. METHODS: ZnMD was synthesized and physicochemically characterized. Fluorescence spectral studies were conducted to examine the binding of both, the ligand and the metal with bovine serum albumin (BSA). MD, ZnMD, and ZnCl2 were administered to spontaneous hypertensive rats (SHR) rats during 8 weeks and blood pressure and echocardiographic parameters were determined. Ex vivo assays were conducted to evaluate levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO). Cross-sectional area (CSA) and collagen levels of left ventricular cardiomyocytes were also assessed. Furthermore, the expression of NAD(P)H oxidase subunits (gp91phox and p47phox) and Superoxide Dismutase 1 (SOD1) was quantified through western blot analysis. RESULTS: The complex exhibited a moderate affinity for binding with BSA showing a spontaneous interaction (indicated by negative ΔG values) and moderate affinity (determined by affinity constant values). The binding process involved the formation of Van der Waals forces and hydrogen bonds. Upon treatment with MD and ZnMD, a reduction in the systolic blood pressure in SHR was observed, being ZnMD more effective than MD (122 ± 8.1 mmHg and 145 ± 5.6 mmHg, at 8th week of treatment, respectively). The ZnMD treatment prevented myocardial hypertrophy, improved the heart function and reduced the cardiac fibrosis, as evidenced by parameters such as left ventricular mass, fractional shortening, and histological studies. In contrast, MD did not show noticeable differences in these parameters. ZnMD regulates negatively the oxidative damage by reducing levels of ROS and lipid peroxidation, as well as the cardiac NAD(P)H oxidase, and increasing SOD1 expression, while MD did not show significant effect. Moreover, cardiac nitric oxide levels were greater in the ZnMD therapy compared to MD treatment. CONCLUSION: Both MD and ZnMD have the potential to be transported by albumin. Our findings provide important evidence suggesting that this complex could be a potential therapeutic drug for the treatment of hypertension and cardiac hypertrophy and dysfunction.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Antihypertensive Agents/therapeutic use , Methyldopa/pharmacology , Methyldopa/therapeutic use , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1 , Nitric Oxide/metabolism , Hypertension/drug therapy , Blood Pressure , Rats, Inbred SHR , Myocytes, Cardiac/metabolism , Cardiomegaly , NADPH Oxidases , Zinc/pharmacology , Zinc/therapeutic use
5.
Cancer Gene Ther ; 30(9): 1285-1295, 2023 09.
Article in English | MEDLINE | ID: mdl-37353558

ABSTRACT

Ewing sarcoma (EWS) is a challenging pediatric cancer characterized by vast intra-tumor heterogeneity. We evaluated the RNA-binding protein IGF2BP3, whose high expression correlates with a poor prognosis and an elevated tendency of metastases, as a possible soluble mediator of inter-cellular communication in EWS. Our data demonstrate that (i) IGF2BP3 is detected in cell supernatants, and it is released inside extracellular vesicles (EVs); (ii) EVs from IGF2BP3-positive or IGF2BP3-negative EWS cells reciprocally affect cell migration but not the proliferation of EWS recipient cells; (iii) EVs derived from IGF2BP3-silenced cells have a distinct miRNA cargo profile and inhibit the PI3K/Akt pathway in recipient cells; (iv) the 11 common differentially expressed miRNAs associated with IGF2BP3-positive and IGF2BP3-negative EVs correctly group IGF2BP3-positive and IGF2BP3-negative clinical tissue specimens. Overall, our data suggest that IGF2BP3 can participate in the modulation of phenotypic heterogeneity.


Subject(s)
Extracellular Vesicles , Sarcoma, Ewing , Child , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
6.
Cells ; 12(7)2023 03 29.
Article in English | MEDLINE | ID: mdl-37048113

ABSTRACT

Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.


Subject(s)
Chordata , Neurodegenerative Diseases , Urochordata , Animals , Humans , Cell Death , Apoptosis/genetics , Urochordata/genetics , Neurodegenerative Diseases/genetics , Mammals
7.
Eur J Pharmacol ; 946: 175654, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36930883

ABSTRACT

Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously performed by our group using Zinc (ZnCand) as a strategy for improving its pharmacological properties. The measurements showed that ZnCand exerts a stronger interaction with the angiotensin II receptor, type 1 (AT1 receptor), reducing oxidative stress and intracellular calcium flux, a mechanism implied in cell contraction. These results were accompanied by the reduction of the contractile capacity of mesangial cells. In vivo experiments showed that the complex causes a significant decrease in systolic blood pressure after 8 weeks of treatment in spontaneously hypertensive rats (SHR). The reduction of heart hypertrophy was evidenced by echocardiography, the histologic cross-sectional area of cardiomyocytes, collagen content, the B-type natriuretic peptide (BNP) marker and connective tissue growth factor (CTGF) and the matrix metalloproteinase 2 (MMP-2) expression. Besides, the complex restored the redox status. In this study, we demonstrated that the complexation with Zn(II) improves the antihypertensive and cardiac effects of the parental drug.


Subject(s)
Antihypertensive Agents , Hypertension , Hypertrophy, Left Ventricular , Zinc , Animals , Rats , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Biphenyl Compounds/pharmacology , Blood Pressure , Hypertension/complications , Hypertension/drug therapy , Hypertrophy, Left Ventricular/drug therapy , Matrix Metalloproteinase 2 , Myocytes, Cardiac , Rats, Inbred SHR , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Zinc/pharmacology
8.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096339

ABSTRACT

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Subject(s)
14-3-3 Proteins , Spastic Paraplegia, Hereditary , Humans , 14-3-3 Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Spastic Paraplegia, Hereditary/genetics , Mutation , Corpus Callosum/pathology , Proteins/genetics
10.
Acta Neuropathol ; 144(1): 81-106, 2022 07.
Article in English | MEDLINE | ID: mdl-35596783

ABSTRACT

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease , Amino Acid Transport System X-AG , Animals , Glutamates , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mutation , Neurons/pathology , Parkinson Disease/pathology
11.
Biochim Biophys Acta Gen Subj ; 1866(2): 130060, 2022 02.
Article in English | MEDLINE | ID: mdl-34822923

ABSTRACT

During menopause women are exposed to an increase in cardiovascular risk. G protein-coupled estrogen receptor (GPER) is known to mediate several of the protective effects of such hormones. G1 was described as a selective and synthetic agonist for GPER. The aim of the present research is to evaluate the effect of a chronic treatment with G1 in ovariectomized (OVX) rats exposed to ischemia/reperfusion (I/R). Considering the hypothesis that an impaired mitochondrial state could be involved in the alterations produced in OVX rats, other objective of this study was to investigate it in an isolated preparation. Three months old rats were assigned to undergo either bilateral ovariectomy or sham operation. The OVX rats were randomly treated during one month with either G1 or vehicle. Cardiac mitochondria from OVX rats showed a depolarized membrane potential and a decreased calcium retention capacity in comparison with Sham rats, which were prevented by chronic G1 treatment. I/R caused a higher decrease of left ventricular developed pressure and a higher increase of left ventricular end diastolic pressure in OVX compared to Sham hearts. These altered mechanical parameters were prevented by G1. The induced infarct size was significantly higher in OVX, which was reduced by G1 treatment. These results indicate that the mitochondrial state in OVX rats is impaired, accompanied by an altered mechanical response after ischemia and reperfusion injury, which was effectively prevented with chronic treatment with G1. The present study may provide further insights for the potential development of a therapy based on the GPER modulation.


Subject(s)
Reperfusion Injury
12.
Cancer Res ; 82(4): 708-720, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34903601

ABSTRACT

Capicua-double homeobox 4 (CIC-DUX4)-rearranged sarcomas (CDS) are extremely rare, highly aggressive primary sarcomas that represent a major therapeutic challenge. Patients are treated according to Ewing sarcoma protocols, but CDS-specific therapies are strongly needed. In this study, RNA sequencing was performed on patient samples to identify a selective signature that differentiates CDS from Ewing sarcoma and other fusion-driven sarcomas. This signature was used to validate the representativeness of newly generated CDS experimental models-patient-derived xenografts (PDX) and PDX-derived cell lines-and to identify specific therapeutic vulnerabilities. Annotation analysis of differentially expressed genes and molecular gene validation highlighted an HMGA2/IGF2BP/IGF2/IGF1R/AKT/mTOR axis that characterizes CDS and renders the tumors particularly sensitive to combined treatments with trabectedin and PI3K/mTOR inhibitors. Trabectedin inhibited IGF2BP/IGF2/IGF1R activity, but dual inhibition of the PI3K and mTOR pathways was required to completely dampen downstream signaling mediators. Proof-of-principle efficacy for the combination of the dual AKT/mTOR inhibitor NVP-BEZ235 (dactolisib) with trabectedin was obtained in vitro and in vivo using CDS PDX-derived cell lines, demonstrating a strong inhibition of local tumor growth and multiorgan metastasis. Overall, the development of representative experimental models (PDXs and PDX-derived cell lines) has helped to identify the unique sensitivity of the CDS to AKT/mTOR inhibitors and trabectedin, revealing a mechanism-based therapeutic strategy to fight this lethal cancer. SIGNIFICANCE: This study identifies altered HMGA2/IGF2BP/IGF2 signaling in CIC-DUX4 sarcomas and provides proof of principle for combination therapy with trabectedin and AKT/mTOR dual inhibitors to specifically combat the disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Sarcoma/drug therapy , Soft Tissue Neoplasms/drug therapy , Animals , Cell Line, Tumor , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/administration & dosage , Sarcoma/genetics , Sarcoma/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Trabectedin/administration & dosage , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
13.
Oncogenesis ; 10(11): 77, 2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34775465

ABSTRACT

HER2-positive breast cancers may lose HER2 expression in recurrences and metastases. In this work, we studied cell lines derived from two transgenic mammary tumors driven by human HER2 that showed different dynamics of HER2 status. MamBo89HER2stable cell line displayed high and stable HER2 expression, which was maintained upon in vivo passages, whereas MamBo43HER2labile cell line gave rise to HER2-negative tumors from which MamBo38HER2loss cell line was derived. Both low-density seeding and in vitro trastuzumab treatment of MamBo43HER2labile cells induced the loss of HER2 expression. MamBo38HER2loss cells showed a spindle-like morphology, high stemness and acquired in vivo malignancy. A comprehensive molecular profile confirmed the loss of addiction to HER2 signaling and acquisition of an EMT signature, together with increased angiogenesis and migration ability. We identified PDGFR-B among the newly expressed determinants of MamBo38HER2loss cell tumorigenic ability. Sunitinib inhibited MamBo38HER2loss tumor growth in vivo and reduced stemness and IL6 production in vitro. In conclusion, HER2-positive mammary tumors can evolve into tumors that display distinctive traits of claudin-low tumors. Our dynamic model of HER2 status can lead to the identification of new druggable targets, such as PDGFR-B, in order to counteract the resistance to HER2-targeted therapy that is caused by HER2 loss.

14.
Biology (Basel) ; 10(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34439963

ABSTRACT

The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.

15.
J Cell Commun Signal ; 15(4): 545-566, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34228239

ABSTRACT

The acronym for the CCN family was recently revised to represent "cellular communication network". These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.

16.
Mol Neurobiol ; 58(7): 3119-3140, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33629273

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative, progressive disease without a cure. To prevent PD onset or at least limit neurodegeneration, a better understanding of the underlying cellular and molecular disease mechanisms is crucial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent one of the most common causes of familial PD. In addition, LRRK2 variants are risk factors for sporadic PD, making LRRK2 an attractive therapeutic target. Mutations in LRRK2 have been linked to impaired alpha-synuclein (α-syn) degradation in neurons. However, in which way pathogenic LRRK2 affects α-syn clearance by astrocytes, the major glial cell type of the brain, remains unclear. The impact of astrocytes on PD progression has received more attention and recent data indicate that astrocytes play a key role in α-syn-mediated pathology. In the present study, we aimed to compare the capacity of wild-type astrocytes and astrocytes carrying the PD-linked G2019S mutation in Lrrk2 to ingest and degrade fibrillary α-syn. For this purpose, we used two different astrocyte culture systems that were exposed to sonicated α-syn for 24 h and analyzed directly after the α-syn pulse or 6 days later. To elucidate the impact of LRRK2 on α-syn clearance, we performed various analyses, including complementary imaging, transmission electron microscopy, and proteomic approaches. Our results show that astrocytes carrying the G2019S mutation in Lrrk2 exhibit a decreased capacity to internalize and degrade fibrillar α-syn via the endo-lysosomal pathway. In addition, we demonstrate that the reduction of α-syn internalization in the Lrrk2 G2019S astrocytes is linked to annexin A2 (AnxA2) loss of function. Together, our findings reveal that astrocytic LRRK2 contributes to the clearance of extracellular α-syn aggregates through an AnxA2-dependent mechanism.


Subject(s)
Astrocytes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Astrocytes/pathology , Cell Line, Transformed , Cells, Cultured , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/genetics
17.
Sci Rep ; 11(1): 1563, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452364

ABSTRACT

We established patient-derived xenografts (PDX) from human primary breast cancers and studied whether stability or progressive events occurred during long-term in vivo passages (up to 4 years) in severely immunodeficient mice. While most PDX showed stable biomarker expression and growth phenotype, a HER2-positive PDX (PDX-BRB4) originated a subline (out of 6 studied in parallel) that progressively acquired a significantly increased tumor growth rate, resistance to cell senescence of in vitro cultures, increased stem cell marker expression and high lung metastatic ability, along with a strong decrease of BCL2 expression. RNAseq analysis of the progressed subline showed that BCL2 was connected to three main hub genes also down-regulated (CDKN2A, STAT5A and WT1). Gene expression of progressed subline suggested a partial epithelial-to-mesenchymal transition. PDX-BRB4 with its progressed subline is a preclinical model mirroring the clinical paradox of high level-BCL2 as a good prognostic factor in breast cancer. Sequential in vivo passages of PDX-BRB4 chronically treated with trastuzumab developed progressive loss of sensitivity to trastuzumab while HER2 expression and sensitivity to the pan-HER tyrosine kinase inhibitor neratinib were maintained. Long-term PDX studies, even though demanding, can originate new preclinical models, suitable to investigate the mechanisms of breast cancer progression and new therapeutic approaches.


Subject(s)
Breast Neoplasms/metabolism , Cell Line, Tumor/metabolism , Receptor, ErbB-2/metabolism , Xenograft Model Antitumor Assays/methods , Animals , Disease Models, Animal , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Protein Kinase Inhibitors/pharmacology , Quinolines/therapeutic use , Trastuzumab/therapeutic use
18.
Arch Biochem Biophys ; 694: 108600, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007282

ABSTRACT

Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, µm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.


Subject(s)
Myocardium/metabolism , Physical Conditioning, Animal , Sodium-Bicarbonate Symporters/metabolism , Animals , Cardiomegaly, Exercise-Induced/physiology , Hydrogen Peroxide/pharmacology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Isoforms/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation
19.
Pflugers Arch ; 472(1): 103-115, 2020 01.
Article in English | MEDLINE | ID: mdl-31754830

ABSTRACT

The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 µM), the selective inhibitor of sAC KH7 (1 µM), and the PKA inhibitor H89 (0.1 µM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.


Subject(s)
Adenylyl Cyclases/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sodium-Bicarbonate Symporters/metabolism , Adenylyl Cyclase Inhibitors/pharmacology , Animals , Benzamides/pharmacology , Calcium Signaling , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Heart Ventricles/cytology , Isoquinolines/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium-Bicarbonate Symporters/antagonists & inhibitors , Sulfonamides/pharmacology
20.
Sci Rep ; 9(1): 12174, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434953

ABSTRACT

Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient's tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Sarcoma, Ewing/drug therapy , 12E7 Antigen/immunology , Animals , Antibodies/therapeutic use , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Irinotecan/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Osteosarcoma/metabolism , Osteosarcoma/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Transplantation, Heterologous , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...