Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Life Sci ; 349: 122721, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754813

ABSTRACT

AIMS: Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS: Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS: CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1ß in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE: The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.


Subject(s)
Ischemic Stroke , Rats, Wistar , Sepsis , Sex Characteristics , Animals , Male , Female , Sepsis/complications , Sepsis/metabolism , Rats , Ischemic Stroke/metabolism , Ischemic Stroke/complications , Ischemic Stroke/pathology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Oxidative Stress , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Recovery of Function , Sex Factors , Brain Ischemia/metabolism , Brain Ischemia/complications , Peroxidase/metabolism
4.
Mol Neurobiol ; 59(12): 7229-7235, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36136265

ABSTRACT

Sepsis is a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Surviving patients have cognitive and memory damage that started during sepsis. These neurologic damages have been associated with increased BBB permeability and microglial activation. However, a few discrete studies have seen over the years pointing to the potential role of astrocytes in the pathophysiology of neurological damage after sepsis. The purpose of this article is to review information on the potential role of astrocytes during sepsis, as well as to provoke further studies in this area. These published articles show astrocytic activation after sepsis; they also evidence the release of inflammatory mediators by these cells. In this sense, the role of astrocytes should be better elucidated during sepsis progression.


Subject(s)
Astrocytes , Sepsis , Humans , Brain , Sepsis/complications , Inflammation Mediators , Macrophage Activation
5.
Mol Neurobiol ; 59(6): 3860-3872, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35426063

ABSTRACT

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. The crosstalk occurs between the primary focus of infection and lung and other organ systems including the central nervous system via soluble and cellular inflammatory mediators and that this involves both the innate and adaptive immune systems. These interactions are reflected by genomic changes and abnormal rates of cellular apoptosis. The lungs and the brain are rapidly affected due to an inflammatory response and oxidative stress in sepsis. Physical exercise promotes positive responses in the inflammatory cascade and oxidative/antioxidant system. In this sense, we aimed at determining the possible protectant effects of a physical exercise program against inflammation and oxidative stress on the lungs and the brain of rats subjected to sepsis. Adult male Wistar rats were randomly assigned to the sham + sedentary (S), sham + trained (T), and cecal ligation and perforation (CLP) + S and CLP + T and subjected to a physical exercise program using a treadmill for 21 days. Forty-eight hours after the last training session, sepsis was induced by the CLP model. Twenty-four hours later, the animals were euthanized and the lungs, the hippocampus, and the prefrontal cortex were harvested to determine the levels of cytokines by enzyme-linked immunosorbent assay (ELISA) and nitrite and reactive oxygen species production, oxidative damage to proteins, and antioxidant enzymes by spectrophotometric method. Sepsis increased the lung and brain levels of TNF-α, IL-1ß, and IL-6, while diminished IL-10 levels, elevated nitrite levels and reactive oxygen species production, augmented the levels of protein carbonyls and diminished the sulfhydryl content, and decreased SOD activity and GSH levels. The exercise program diminished the levels of TNF-α, IL-1ß, IL-6, nitrite, and reactive oxygen species production, as well as the levels of protein carbonyls but augmented the sulfhydryl content, and elevated SOD activity. In conclusion, the exercise program protected the lungs and the brain of septic rats against inflammation and oxidative stress.


Subject(s)
Antioxidants , Oxidative Stress , Physical Conditioning, Animal , Sepsis , Animals , Antioxidants/metabolism , Brain/metabolism , Disease Models, Animal , Inflammation/metabolism , Inflammation/prevention & control , Interleukin-6/metabolism , Lung/metabolism , Male , Nitrites , Rats , Rats, Wistar , Reactive Oxygen Species , Sepsis/complications , Sepsis/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Neurotox Res ; 39(2): 119-132, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33025358

ABSTRACT

Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.


Subject(s)
Encephalitis/prevention & control , Glycoproteins/administration & dosage , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/administration & dosage , Sepsis-Associated Encephalopathy/prevention & control , Animals , Cells, Cultured , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Oxidative Stress/drug effects , Rats, Wistar
7.
Mol Neurobiol ; 57(12): 5247-5262, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32870491

ABSTRACT

Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1ß, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.


Subject(s)
Brain/pathology , Memory Disorders/etiology , Memory Disorders/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/complications , Acute Disease , Animals , Astrocytes/metabolism , Brain/metabolism , Catalase/metabolism , Cytokines/metabolism , Electron Transport , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/metabolism , Inflammation Mediators/metabolism , Kaplan-Meier Estimate , Lipid Peroxidation , Male , Memory , Memory Disorders/physiopathology , Microglia/metabolism , Mitochondria/metabolism , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress , Prefrontal Cortex/metabolism , Protein Carbonylation , Rats, Wistar , Superoxide Dismutase/metabolism , Survival Analysis
8.
Exp Gerontol ; 140: 111063, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32827711

ABSTRACT

Sepsis is a set of serious manifestations throughout the body produced by an infection, leading to changes that compromise cellular homeostasis and can result in dysfunction of the central nervous system. The elderly have a higher risk of developing sepsis than younger peoples. Under the influence of inflammatory mediators and oxidizing agents released in the periphery as a result of the infectious stimulus, changes occur in the blood-brain barrier (BBB) permeability, with neutrophil infiltration, the passage of toxic compounds, activation of microglia and production of reactive species that results in potentiation of neuroimmune response, with the progression of neuronal damage and neuroinflammation. The objective of this study is to compare BBB permeability and the development of oxidative stress in the hippocampus and prefrontal cortex of young and old rats submitted to polymicrobial sepsis induction. Male Wistar rats grouped into sham (60d), sham (210d), cecal ligation and perforation (CLP) (60d) and CLP (210d) with n = 16 per experimental group were evaluated using the CLP technique to induce sepsis. The brain regions were collected at 24 h after sepsis induction to determine BBB permeability, myeloperoxidase (MPO) activity as marker of neutrophil activation, nitrite/nitrate (N/N) levels as marker of reactive nitrogen species, thiobarbituric acid reactive substances as marker of lipid peroxidation, protein carbonylation as marker of protein oxidation, and activity of antioxidant enzyme catalase (CAT). There was an increase in the BBB permeability in the CLP groups, and this was enhanced with aging in both brain region. MPO activity in the brain regions increased in the CLP groups, along with a hippocampal increase in the CLP 210d group compared to the 60d group. The concentration of N/N in the brain region was increased in the CLP groups. The damage to lipids and proteins in the two structures was enhanced in the CLP groups, while only lipid peroxidation was higher in the prefrontal cortex of the CLP 210d group compared to the 60d. CAT activity in the hippocampus was decreased in both CLP groups, and this was also influenced by age, whereas in the prefrontal cortex there was only a decrease in CAT in the CLP 60d group compared to the sham 60d. These findings indicate that aging potentiated BBB permeability in sepsis, which possibly triggered an increase in neutrophil infiltration and, consequently, an increase in oxidative stress.


Subject(s)
Blood-Brain Barrier , Sepsis , Animals , Disease Models, Animal , Male , Oxidative Stress , Permeability , Rats , Rats, Wistar
9.
Mol Neurobiol ; 57(11): 4451-4466, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32743736

ABSTRACT

Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1ß in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.


Subject(s)
Brain/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Fish Oils/pharmacology , Inflammation/pathology , Oxidative Stress/drug effects , Sepsis/complications , Thioctic Acid/pharmacology , Animals , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Catalase/metabolism , Cells, Cultured , Cytokines/metabolism , Female , Inflammation/complications , Kaplan-Meier Estimate , Memory Disorders/complications , Microglia/drug effects , Microglia/metabolism , Open Field Test , Peroxidase/metabolism , Protein Carbonylation/drug effects , Rats, Wistar , Superoxide Dismutase/metabolism
10.
Inflammation ; 43(1): 24-31, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31741197

ABSTRACT

The pathophysiology of sepsis is extremely complex. During this disease, the exacerbation of the inflammatory response causes oxidative stress, alterations in mitochondrial energy dynamics, and multiple organ failure. Some studies have highlighted the important role of the NLRP3 inflammasome in sepsis. This inflammasome is a macromolecular protein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1ß and IL-18. In this review, we elucidate evidences to understand the connection between sepsis development and the NLRP3 inflammasome, the most widely investigated member of this class of receptor.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/metabolism , Animals , Cytokines/metabolism , Humans , Inflammasomes/immunology , Sepsis/immunology , Sepsis/physiopathology , Signal Transduction
11.
Microvasc Res ; 123: 19-24, 2019 05.
Article in English | MEDLINE | ID: mdl-30552905

ABSTRACT

BACKGROUND: The choroid plexus (CP), main component of blood-cerebrospinal fluid barrier (BCSFB), protects the brain from peripheral inflammation similar to the blood-brain barrier. Thus, CP is considered a critical target site of oxidative damage, which in sepsis oxidative stress is likely to be a major step in the development of brain damage. Functional alterations in CP may be associated with sepsis-induced brain injury. However, there is no description on the mechanisms associated with BCSFB disruption during sepsis development. MATERIALS AND METHODS: To test this hypothesis, we examined time-dependent oxidative stress markers in CP and permeability of BCSFB in rats submitted to polymicrobial sepsis by cecal ligation and puncture (CLP) or sham surgery (control). We assessed albumin cerebrospinal fluid/plasma concentration quotient (Qalb), an index of BCSFB dysfunction and in CP samples, the oxidative damage in lipids, proteins, antioxidant enzymes and nitrite/nitrate (N/N) concentration in 12, 24 and 48 h after CLP. RESULTS: The increase of BCSFB permeability is time-related to the increase of N/N concentration, oxidative damage to lipid and proteins, and decrease of antioxidant enzyme superoxide dismutase activity at 12 h in the CP; and decrease of catalase activity in 12 and 24 h. CONCLUSIONS: In experimental sepsis the BCSFB dysfunction occurs and oxidative stress seems to be a major step in this dysfunction.


Subject(s)
Choroid Plexus/blood supply , Oxidative Stress , Sepsis/blood , Sepsis/cerebrospinal fluid , Animals , Antioxidants/metabolism , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Capillary Permeability , Cecum/microbiology , Cecum/surgery , Disease Models, Animal , Ligation , Lipid Peroxidation , Male , Protein Carbonylation , Punctures , Rats, Wistar , Sepsis/microbiology , Serum Albumin/cerebrospinal fluid , Time Factors
12.
Brain Behav Immun ; 73: 661-669, 2018 10.
Article in English | MEDLINE | ID: mdl-30041011

ABSTRACT

Postoperative cognitive dysfunction (POCD) is defined by cognitive impairment determined by neuropsychological tests from before to after surgery. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after surgery. We aimed at understanding the mechanisms underlying POCD elderly rats in an experimental tibial fracture model. Elderly male Wistar rats were subjected to tibial fracture (TF) model. Control (sham) and fracture (TF) groups were followed to determine nitrite/nitrate concentration; oxidative damage to lipids and proteins; the activity of antioxidant enzymes (superoxide dismutase-SOD and catalase-CAT), mitochondrial respiratory chain enzymes, and creatine kinase (CK); and BDNF levels in the hippocampus and prefrontal cortex (at 24 h and at seven days) and cognitive function through habituation to the open field task and novel object recognition task (only at seven days). TF group presented increased concentration of nitrite/nitrate, hippocampal lipid peroxidation at seven days, protein oxidative damage in the prefrontal cortex and hippocampus at 24 h, decreased antioxidant activity in both structures on the first postoperative day and compromised function of the mitochondrial respiratory chain complexes as well as the CK enzyme. In addition, the levels of BDNF were reduced and memory function was impaired in the TF group. In conclusion, elderly rats submitted to an experimental model of tibial fracture displayed memory impairment accompanied by an increase in oxidative stress, mitochondrial dysfunction and reduced neurotrophin level.


Subject(s)
Cognitive Dysfunction/physiopathology , Mitochondria/physiology , Oxidative Stress/physiology , Age Factors , Animals , Antioxidants/metabolism , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Cognition Disorders/metabolism , Disease Models, Animal , Hippocampus/metabolism , Lipid Peroxidation , Male , Memory Disorders/metabolism , Postoperative Complications/physiopathology , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
13.
Neurotox Res ; 34(3): 418-430, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29713994

ABSTRACT

Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.


Subject(s)
Cognition Disorders , Dimethyl Fumarate/therapeutic use , Immunosuppressive Agents/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Oxidative Stress/drug effects , Sepsis/complications , Animals , Catalase/metabolism , Cognition Disorders/complications , Cognition Disorders/etiology , Cognition Disorders/therapy , Cytokines/metabolism , Disease Models, Animal , Exploratory Behavior/drug effects , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Male , Neutrophil Infiltration/drug effects , Nitrates/metabolism , Nitrites/metabolism , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Superoxide Dismutase/metabolism
14.
Mol Neurobiol ; 55(2): 1045-1053, 2018 02.
Article in English | MEDLINE | ID: mdl-28092082

ABSTRACT

The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) are important for the maintenance of brain homeostasis. During sepsis, peripheral production of proinflammatory cytokines and reactive oxygen species are responsible for structural alterations in those brain barriers. Thus, an increasing permeability of these barriers can lead to the activation of glial cells such as microglia and the production of cytotoxic mediators which in turn act on the brain barriers, damaging them further. Thereby, in this review, we try to highlight how the brain barrier's permeability is not only a cause but a consequence of brain injury in sepsis.


Subject(s)
Blood-Brain Barrier/pathology , Encephalitis/pathology , Sepsis/pathology , Blood-Brain Barrier/metabolism , Encephalitis/metabolism , Humans , Microglia/metabolism , Microglia/pathology , Permeability , Sepsis/metabolism
15.
Mol Neurobiol ; 55(6): 5255-5268, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28879460

ABSTRACT

Neurological dysfunction as a result of neuroinflammation has been reported in sepsis and cause high mortality. High levels of cytokines stimulate the formation of neurotoxic metabolites by kynurenine (KYN) pathway. Vitamin B6 (vit B6) has anti-inflammatory and antioxidant properties and also acts as a cofactor for enzymes of the KYN pathway. Thus, by using a relevant animal model of polymicrobial sepsis, we studied the effect of vit B6 on the KYN pathway, acute neurochemical and neuroinflammatory parameters, and cognitive dysfunction in rats. Male Wistar rats (250-300 g) were submitted to cecal ligation and perforation (CLP) and divided into sham + saline, sham + vit B6, CLP + saline, and CLP + vit B6 (600 mg/kg, s.c.) groups. Twenty-four hours later, the prefrontal cortex and hippocampus were removed for neurochemical and neuroinflammatory analyses. Animals were followed for 10 days to determine survival rate, when cognitive function was assessed by behavioral tests. Vitamin B6 interfered in the activation of kynurenine pathway, which led to an improvement in neurochemical and neuroinflammatory parameters and, consequently, in the cognitive functions of septic animals. Thus, the results indicate that vit B6 exerts neuroprotective effects in acute and late consequences after sepsis.


Subject(s)
Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Kynurenine/metabolism , Sepsis/drug therapy , Sepsis/microbiology , Vitamin B 6/therapeutic use , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/pathology , Cytokines/metabolism , Energy Metabolism/drug effects , Inflammation/pathology , Inflammation Mediators/metabolism , Kaplan-Meier Estimate , Lipid Peroxidation/drug effects , Male , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress/drug effects , Permeability , Peroxidase/metabolism , Protein Carbonylation/drug effects , Rats, Wistar , Tryptophan/metabolism , Vitamin B 6/pharmacology
16.
Inflammation ; 41(1): 315-327, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29124567

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction induced by a disrupted host response to infecting pathogens. Evidences suggest that oxidative stress is intrinsically related to sepsis progression. Dimethyl fumarate (DMF) is a novel oral therapeutic agent with anti-oxidant properties which exerts protective effects through activation of nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2). Thus, the aim of this study is to evaluate the effect of DMF in different organs of rats submitted to an animal model of sepsis. Adult male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP) procedure and sham-operated rats was considered control group. The experimental groups were divided into sham + vehicle, sham + DMF, sham + NAC, CLP + vehicle, CLP + DMF, and CLP + NAC. Rats were treated by oral gavage with DMF immediately after and 12 h after surgery, or NAC (s.c.) at 3, 6, and 12 h after surgery. Twenty-four hours after sepsis induction, neutrophil infiltration, nitrite/nitrate concentrations, oxidative damage to lipids and proteins, superoxide dismutase (SOD), and catalase (CAT) activities were evaluated in the heart, liver, lung, and kidney. Septic animals presented increased neutrophil infiltration, NO metabolism, oxidative damage to lipids and proteins, and decreases of SOD and CAT activities, mainly in the heart, liver, and lung, while DMF-treated animals showed significant reduction in neutrophil infiltration, NO metabolism, and oxidative damage followed by increased SOD and CAT activities. DMF is effective in preventing oxidative stress and inflammation in rats 24 h after sepsis induction.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dimethyl Fumarate/pharmacology , Inflammation/prevention & control , Oxidative Stress/drug effects , Sepsis/drug therapy , Animals , Biomarkers/metabolism , Cecum/microbiology , Cecum/surgery , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Inflammation Mediators/metabolism , Ligation , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/immunology , Liver/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Male , Myocardium/immunology , Myocardium/metabolism , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Protein Carbonylation/drug effects , Punctures , Rats, Wistar , Sepsis/immunology , Sepsis/metabolism , Sepsis/microbiology
17.
Inflammation ; 39(6): 2062-2071, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27645696

ABSTRACT

Sepsis progression is linked to the imbalance between reactive oxygen species and antioxidant enzymes. Sepsis affects multiple organs, but when associated with a chronic inflammatory disease, such as obesity, it may be exacerbated. We hypothesized that obesity could aggravate the oxidative damage to peripheral organs of rats submitted to an animal model of sepsis. Male Wistar rats aged 8 weeks received hypercaloric nutrition for 2 months to induce obesity. Sepsis was induced by cecal ligation and puncture (CLP) procedure, and sham-operated rats were considered as control group. The experimental groups were divided into sham + eutrophic, sham + obese, CLP + eutrophic, and CLP + obese. Twelve and 24 h after surgery, oxidative damage to lipids and proteins and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the liver, lung, kidney, and heart. The data indicate that obese rats subjected to sepsis present oxidative stress mainly in the lung and liver. This alteration reflected an oxidative damage to lipids and proteins and an imbalance of SOD and CAT levels, especially 24 h after sepsis. It follows that obesity due to its pro-inflammatory phenotype can aggravate sepsis-induced damage in peripheral organs.


Subject(s)
Obesity/complications , Oxidative Stress , Sepsis/complications , Animals , Catalase , Kidney/metabolism , Liver/injuries , Liver/metabolism , Lung/metabolism , Lung Injury/metabolism , Male , Myocardium/metabolism , Rats , Rats, Wistar , Superoxide Dismutase
18.
Int J Colorectal Dis ; 31(11): 1759-1766, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27614446

ABSTRACT

PURPOSES: The objective of this study was to evaluate the effect of supplementation with vitamin C on intestinal anastomosis healing in malnourished rats. METHODS: Male Wistar rats were divided into three groups: (1) sham, well-nourished rats that received vehicle; (2) FR+Veh, rats that were subjected to food restriction and received vehicle; and (3) FR+VC, rats that were subjected to food restriction and received vitamin C. Four days before surgery, the animals received vitamin C (100 mg/kg/day) via gavage and underwent colon resection with anastomosis in a single plane. The survival rate of rats was monitored until day 7 after surgery. Regarding anastomosis tissues, we examined intra-abdominal adhesion index, hydroxyproline content, collagen density, inflammatory parameters, and oxidative damage to proteins and lipids. RESULTS: Malnutrition decreases body weight and increases mortality; the survival rate was 90 % in group 1, 60 % in group 2, and 80 % in group 3. Vitamin C was able to increase hydroxyproline concentration and density of collagen and decrease the intra-abdominal adhesion index, as well as the infiltration of neutrophils and oxidative damage to proteins in malnourished rats compared to group treated with vehicle. CONCLUSIONS: Preoperative vitamin C supplementation can improve the intestinal anastomosis healing, biochemical alterations, and prolong survival in rats subjected to food restriction.


Subject(s)
Ascorbic Acid/therapeutic use , Colon/surgery , Dietary Supplements , Malnutrition/drug therapy , Preoperative Care , Rectum/surgery , Wound Healing/drug effects , Anastomosis, Surgical , Animals , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Body Weight/drug effects , Collagen/metabolism , Colon/drug effects , Colon/pathology , Hydroxyproline/metabolism , Male , Malnutrition/complications , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress/drug effects , Peroxidase/metabolism , Rats, Wistar , Rectum/drug effects , Rectum/pathology , Tissue Adhesions/complications , Tissue Adhesions/drug therapy , Tumor Necrosis Factor-alpha/metabolism
19.
Pathol Res Pract ; 212(9): 755-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27475409

ABSTRACT

OBJETIVE: The aim of this study was to evaluate the effects of diphenyl diselenide (PhSe)2 and ebselen (EB) in ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in rats. METHODS: The effects of (PhSe)2 and EB in rats submitted to DSS-induced colitis were determined by measurement of oxidative stress parameters, inflammatory response and bowel histopathological alterations. RESULTS: Animals developed moderate to severe neutrophil infiltration in histopathology assay in DSS rats and (PhSe)2 improved this response. Moreover, the treatment with (PhSe)2 decreased the oxidative damage in lipids and proteins, as well as reversed the superoxide dismutase (SOD) and catalase (CAT) levels in rats treated with DSS. EB was able only to reverse damage in lipids and the low levels of SOD in this animal model. CONCLUSIONS: The organoselenium compounds tested demonstrated an anti-inflammatory and antioxidant activity reducing the colon damage, being (PhSe)2 more effective than EB.


Subject(s)
Azoles/therapeutic use , Benzene Derivatives/therapeutic use , Colitis/drug therapy , Inflammation/drug therapy , Organoselenium Compounds/therapeutic use , Oxidative Stress/drug effects , Animals , Azoles/pharmacology , Benzene Derivatives/pharmacology , Catalase/metabolism , Colitis/chemically induced , Colitis/metabolism , Colon/drug effects , Colon/metabolism , Disease Models, Animal , Inflammation/chemically induced , Inflammation/metabolism , Isoindoles , Male , Neutrophils , Organoselenium Compounds/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...