Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Radiother ; 26(8): 1016-1026, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35803860

ABSTRACT

PURPOSE: Radiotherapy with protons (PT) is a standard treatment of ocular tumors. It achieves excellent tumor control, limited toxicities, and the preservation of important functional outcomes, such as vision. Although PT may appear as one homogenous technique, it can be performed using dedicated ocular passive scattering PT or, increasingly, Pencil Beam Scanning (PBS), both with various degrees of patient-oriented customization. MATERAIAL AND METHODS: MEDICYC PT facility of Nice are detailed with respect to their technical, dosimetric, microdosimetric and radiobiological, patient and tumor-customization process of PT planning and delivery that are key. 6684 patients have been treated for ocular tumors (1991-2020). Machine characteristics (accelerator, beam line, beam monitoring) allow efficient proton extraction, high dose rate, sharp lateral and distal penumbrae, and limited stray radiation in comparison to beam energy reduction and subsequent straggling with high-energy PBS PT. Patient preparation before PT includes customized setup and image-guidance, CT-based planning, and ocular PT software modelling of the patient eye with integration of beam modifiers. Clinical reports have shown excellent tumor control rates (∼95%), vision preservation and limited toxicity rates (papillopathy, retinopathy, neovascular glaucoma, dry eye, madarosis, cataract). RESULTS: Although demanding, dedicated ocular PT has proven its efficiency in achieving excellent tumor control, OAR sparing and patient radioprotection. It is therefore worth adaptations of the equipments and practice. CONCLUSIONS: Some of these adaptations can be transferred to other PT centers and should be acknowledeged when using non-PT options.


Subject(s)
Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Eye , Protons
2.
Appl Radiat Isot ; 184: 110190, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35303628

ABSTRACT

A new proton beam-line dedicated to R&D programs has been developed at CentreAntoine Lacassagne (CAL), in Nice (France), in collaboration with the Centrenational d'études spatiales (CNES). This is the second beam-line of the MEDICYC 65 MeV cyclotron that is currently in operation, the first being the clinical 'eye-line' used for ocular proton therapy. The R&D beam-line is proposed with two configurations, the first producing a Gaussian narrow beam of a few mm width, the second a 100 mm diameter flat beam with a homogeneity better than ±3%. The energy range is (20 - ∼60) MeV, where the exact upper limit depends on the beam configuration being used. The energy spread of the non-degraded beam is (0.3 ± 0.1) MeV. A beam current between 10 pA and 10 µA can be produced with a stability better than 0.2% above 100 pA, and 2% below. The beam can be monitored online at a precision better than 5% in the flux range 1E5 (1E6) - 1E9 (1E10) p/cm2/s for a flat (Gaussian) configuration, although work is in progress to extend this range. Targeted applications for the R&D beam-line are instrumentation research, radiation tolerance tests of components and radiobiology.


Subject(s)
Proton Therapy , Protons , Cyclotrons , Proton Therapy/methods , Radiobiology , Radiotherapy Dosage , Research
3.
Radiography (Lond) ; 27(2): 574-580, 2021 05.
Article in English | MEDLINE | ID: mdl-33341379

ABSTRACT

INTRODUCTION: Ground-glass nodules may be the expression of benign conditions, pre-invasive lesions or malignancies. The aim of our study was to evaluate the capability of chest digital tomosynthesis (DTS) in detecting pulmonary ground-glass opacities (GGOs). METHODS: An anthropomorphic chest phantom and synthetic nodules were used to simulate pulmonary ground-glass nodules. The nodules were positioned in 3 different regions (apex, hilum and basal); then the phantom was scanned by multi-detector CT (MDCT) and DTS. For each set (nodule-free phantom, nodule in apical zone, nodule in hilar zone, nodule in basal zone) seven different scans (n = 28) were performed varying the following technical parameters: Cu-filter (0.1-0.3 mm), dose rateo (10-25) and X-ray tube voltage (105-125 kVp). Two radiologists in consensus evaluated the DTS images and provided in agreement a visual score: 1 for unidentifiable nodules, 2 for poorly identifiable nodules, 3 for nodules identifiable with fair certainty, 4 for nodules identifiable with absolute certainty. RESULTS: Increasing the dose rateo from 10 to 15, GGOs located in the apex and in the basal zone were better identified (from a score = 2 to a score = 3). GGOs located in the hilar zone were not visible even with a higher dose rate. Intermediate density GGOs had a good visibility score (score = 3) and it did not improve by varying technical parameters. A progressive increase of voltage (from 105 kVp to 125 kVp) did not provide a better nodule visibility. CONCLUSION: DTS with optimized technical parameters can identify GGOs, in particular those with a diameter greater than 10 mm. IMPLICATIONS FOR PRACTICE: DTS could have a role in the follow-up of patients with known GGOs identified in lung apex or base region.


Subject(s)
Radiography, Thoracic , Tomography, X-Ray Computed , Humans , Phantoms, Imaging , Radiographic Image Enhancement , Sensitivity and Specificity
4.
Opt Express ; 14(5): 1888-98, 2006 Mar 06.
Article in English | MEDLINE | ID: mdl-19503518

ABSTRACT

We have devised and experimentally validated, on tissue-simulating phantoms and in vivo, a time-resolved spectral fitting analysis for direct assessment of chromophore concentrations and scattering parameters. Experimental data have been acquired with a time-resolved broadband system based on supercontinuum light generated in a photonic crystal fiber and a 32 channel Time Correlated Single Photon Counting system. The novel method is more robust than conventional techniques, especially at low signal-to-noise ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...