Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Micron ; 36(1): 81-8, 2005.
Article in English | MEDLINE | ID: mdl-15582482

ABSTRACT

Diamond single crystals were grown on the silicon whiskers by a hot filament chemical vapor deposition technique at the filament temperature about 2100 degrees C and the temperature of support 800 degrees C. Specimens were examined by SEM, TEM, HRTEM and SAED. When the filament temperature was about 1900 degrees C globular polycrystalline diamond particles were grown. At a support temperature more then 800 degrees C SiC nanoparticles were formed. To investigate the ion etching process of the silicon tip/diamond system, tips were treated with an Ar(+) beam with energy up to 30 kV. The results depend on fluence: at 4 x 10(18)ion/cm(2) diamonds and partially Si tips were destroyed, amorphous layer was formed (sometimes with nanometric size fragments of diamond); at 1 x 10(18)ion/cm(2) sharpened diamonds (radius of curvature about 20 nm) covered with amorphous layer (radius about 80 nm) probably with nanoclusters of diamond were observed; at 4.4 x 10(17) ion/cm(2) there was no visible tip sharpening but formation of amorphous thick layer occurred. The emission characteristics of Si tips covered with diamond were improved due to ion treatment. Since such tips in our case were covered with amorphous layer containing nanometric size fragments of diamond, we suppose this layer is responsible for electron emission improvement.

2.
Exp Cell Res ; 197(1): 107-12, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1915657

ABSTRACT

Mouse embryo fibroblasts were cultivated on special substrates with discontinuous surfaces. The substrates were silicon plates with multiple vertical (65-90 microns height) spike-like silicon microcrystals evenly distributed on the plate surfaces. It was shown that the cells were successfully spread and flattened on these substrates. The spread cells formed several discrete attachment zones at the tops and side surfaces of the spikes; these zones were separated from one another by distances considerably greater than the diameter of the unspread cell. At early stages of spreading the unspread cells attached to the tops of single spikes and extended long filopodia attached to the distant spikes. At later stages the lamellae were formed between the filopodia: probably these filopodia served as guidelines for extension of lamellae and progressive cell spreading. These experiments demonstrated that continuity of substrate surface is not a necessary condition for advanced cell spreading.


Subject(s)
Fibroblasts/cytology , Animals , Cell Adhesion , Cell Movement , Cells, Cultured , Fibroblasts/ultrastructure , Mice , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...