Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683258

ABSTRACT

Herein, we report a feasible method for forming barrel-like hybrid Cu(OH)2-ZnO structures on α-brass substrate via low-potential electro-oxidation in 1 M NaOH solution. The presented study was conducted to investigate the electrochemical behavior of CuZn in a passive range (-0.2 V-0.5 V) and its morphological changes that occur under these conditions. As found, morphology and phase composition of the grown layer strongly depend on the applied potential, and those material characteristics can be tuned by varying the operating conditions. To the best of our knowledge, the yielded morphology of barrel-like structure has not been previously observed for brass anodizing. Additionally, photoactivity under both UV and daylight irradiation-induced degradation of organic dye (methyl orange) using Cu(OH)2-ZnO composite was explored. Obtained results proved photocatalytic activity of the material that led to degradation of 43% and 36% of the compound in UV and visible light, respectively. The role of Cu(OH)2 in improving ZnO photoactivity was recognized and discussed. As implied by both the undertaken research and the literature on the subject, cupric hydroxide can act as a trap for photoexcited electrons, and thus contributes to stabilizing electron-hole recombination. This resulted in improved light-absorbing properties of the photoactive component, ZnO.

2.
Molecules ; 26(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770787

ABSTRACT

Anodic oxidation of metals leads to the formation of ordered nanoporous or nanotubular oxide layers that contribute to numerous existing and emerging applications. However, there are still numerous fundamental aspects of anodizing that have to be well understood and require deeper understanding. Anodization of metals is accompanied by the inevitable phenomenon of anion incorporation, which is discussed in detail in this review. Additionally, the influence of anion incorporation into anodic alumina and its impact on various properties is elaborated. The literature reports on the impact of the incorporated electrolyte anions on photoluminescence, galvanoluminescence and refractive index of anodic alumina are analyzed. Additionally, the influence of the type and amount of the incorporated anions on the chemical properties of anodic alumina, based on the literature data, was also shown to be important. The role of fluoride anions in d-electronic metal anodizing is shown to be important in the formation of nanostructured morphology. Additionally, the impact of incorporated anionic species, such as ruthenites, and their influence on anodic oxides formation, such as titania, reveals how the phenomenon of anion incorporation can be beneficial.

SELECTION OF CITATIONS
SEARCH DETAIL
...