Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903194

ABSTRACT

In the work, silicon nitride ceramics (Si3N4) and silicon nitride reinforced by nano silicon carbide particles (Si3N4-nSiC) in amounts of 1-10 wt.% were investigated. The materials were obtained using two sintering regimes: under conditions of ambient and high isostatic pressure. The influence of the sintering conditions and the concentration of nanosilicon carbide particles on the thermal and mechanical properties was studied. The presence of highly conductive silicon carbide particles caused an increase in thermal conductivity only in the case of the composites containing 1 wt.% of the carbide phase (15.6 W·m-1·K-1) in comparison with silicon nitride ceramics (11.4 W·m-1·K-1) obtained under the same conditions. With the increase in the carbide phase, a decrease in the densification efficiency during sintering was observed, which caused a decrease in thermal and mechanical performance. The sintering performed using a hot isostatic press (HIP) proved to be beneficial in terms of mechanical properties. The one-step high-pressure assisted sintering process in the HIP minimizes the formation of defects at the sample surface.

2.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204521

ABSTRACT

This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.

3.
Nanomaterials (Basel) ; 10(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349286

ABSTRACT

In the work the research on properties of an yttria nanopowder obtained by solution combustion synthesis (SCS) in terms of its application in ceramic technology is presented. In order to characterize the SCS reaction the decomposition of yttrium nitrate, glycine and their solution was investigated using differential thermal analysis coupled with FT-IR spectrometry of the gases emitted during the measurements. The product obtained in the SCS process was characterized in terms of its microstructure, particle size distribution and BET specific surface. Although the obtained powders showed nanoscaled structures, only after calcination at a temperature of 1100 °C nanosized particles were revealed. The calcined powder occurred in an agglomerated state (cumulants mean Zave = 1.3 µm). After milling particle size was successfully decreased to Zave = 0.28 µm. The deagglomerated powder was isostatically densified and tested for sintering ability. The obtained nanopowder showed very high sintering activity as the shrinkage onset was detected already at a temperature of about 1150 °C.

4.
Nanotechnology ; 23(25): 255705, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22652753

ABSTRACT

Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.


Subject(s)
Electrochemical Techniques/instrumentation , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/instrumentation , Electrochemical Techniques/methods , Electromagnetic Phenomena , Oxygen/analysis , Spectrum Analysis, Raman/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...