Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805485

ABSTRACT

Perovskite solar cells (PSCs) have attracted great research interest in the scientific community due to their extraordinary optoelectronic properties and the fact that their power conversion efficiency (PCE) has increased rapidly in recent years, surpassing other 3rd generation photovoltaic (PV) technologies. Graphitic carbon nitride (g-C3N4) presents exceptional optical and electronic properties and its use was recently expanded in the field of PSCs. The addition of g-C3N4 in the perovskite absorber and/or the electron transport layer (ETL) resulted in PCEs exceeding 22%, mainly due to defects passivation, improved conductivity and crystallinity as well as low charge carriers' recombination rate within the device. Significant performance increase, including stability enhancement, was also achieved when g-C3N4 was applied at the PSC interfaces and the observed improvement was attributed to its wetting (hydrophobic/hydrophilic) nature and the fine tuning of the corresponding interface energetics. The current review summarizes the main innovations for the incorporation of graphitic carbon nitride in PSCs and highlights the significance and perspectives of the g-C3N4 approach for emerging highly efficient and robust PV devices.

2.
ACS Appl Mater Interfaces ; 12(1): 1120-1131, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31829007

ABSTRACT

Photovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells. Thanks to its "push-pull" character, this dye enhances electron transfer from the absorber layer toward the electron-selective contact, thus improving the device's photocurrent and efficiency. The direct result is more than 10% average power conversion efficiency enhancement in both fullerene-based (from 8.65 to 9.80%) and non-fullerene-based (from 7.71 to 8.73%) organic solar cells as well as in perovskite ones (from 14.56 to 15.67%), proving the universality of our approach. Concurrently, by forming a hydrophobic network on the surface of metal oxide substrates, it improves the nanomorphology of the photoactive overlayer and contributes to efficiency stabilization. The fabricated devices of both kinds preserved more than 85% of their efficiency upon exposure to ambient conditions for more than 600 h without any encapsulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...