Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(36): 22101-22112, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32848067

ABSTRACT

The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.


Subject(s)
Actinin/metabolism , Calcium/pharmacology , Entamoeba histolytica/metabolism , Actinin/chemistry , Actinin/genetics , Catalytic Domain , Entamoeba histolytica/genetics , Gene Expression Regulation , Models, Molecular , Protein Conformation , Protein Domains
2.
Cell ; 159(6): 1447-60, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25433700

ABSTRACT

The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins.


Subject(s)
Actinin/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Muscle, Skeletal/chemistry , Protein Structure, Tertiary , Scattering, Small Angle , Sequence Alignment , X-Ray Diffraction
3.
J Biol Chem ; 283(49): 34062-8, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-18836182

ABSTRACT

Gene clusters encoding various type III secretion system (T3SS) injectisomes, frequently code downstream of the conserved atpase gene for small hydrophilic proteins whose amino acid sequences display a propensity for intrinsic disorder and coiled-coil formation. These properties were confirmed experimentally for a member of this class, the HrpO protein from the T3SS of Pseudomonas syringae pv phaseolicola: HrpO exhibits high alpha-helical content with coiled-coil characteristics, strikingly low melting temperature, structural properties that are typical for disordered proteins, and a pronounced self-association propensity, most likely via coiled-coil interactions, resulting in heterogeneous populations of quaternary complexes. HrpO interacts in vivo with HrpE, a T3SS protein for which coiled-coil formation is also strongly predicted. Evidence from HrpO analogues from all T3SS families and the flagellum suggests that the extreme flexibility and propensity for coiled-coil interactions of this diverse class of small, intrinsically disordered proteins, whose structures may alter as they bind to their cognate folded protein targets, might be important elements in the establishment of protein-protein interaction networks required for T3SS function.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Bacterial Physiological Phenomena , Escherichia coli/metabolism , Flagella/chemistry , Models, Biological , Molecular Conformation , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Structure, Quaternary , Protein Structure, Tertiary , Pseudomonas syringae/metabolism , Temperature , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...