Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Blood Cancer J ; 12(7): 110, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853853

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM. RNA-seq analysis of acute leukemia and MM cells revealed both unique and common signaling pathways affected by BRD9 degradation, with common pathways including those associated with regulation of inflammation, cell adhesion, DNA repair and cell cycle progression. Degradation of BRD9 potentiated the effects of several chemotherapeutic agents and targeted therapies against AML, ALL, and MM. Our findings support further development of therapeutic targeting of BRD9, alone or combined with other agents, as a novel strategy for acute leukemias and MM.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Multiple Myeloma , Transcription Factors , Antineoplastic Agents/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , RNA Interference , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Cancer Res ; 82(4): 681-694, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34916221

ABSTRACT

Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process. Validation experiments revealed sensitivities to inhibitors that are already available, such as PLK1 inhibitors, to prevent CTC intravasation. Together, these findings present a new tool to reclassify driver genes involved in the spread of human cancer, providing insights into the biology of metastasis and paving the way to test targeted treatment approaches. SIGNIFICANCE: A loss-of-function CRISPR screen in human CTC-derived xenografts identifies genes critical for individual steps of the metastatic cascade, suggesting novel drivers and treatment opportunities for metastatic breast cancers.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neoplastic Cells, Circulating/metabolism , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA-Seq/methods , Survival Analysis , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
3.
Nature ; 566(7745): 553-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30728496

ABSTRACT

A better understanding of the features that define the interaction between cancer cells and immune cells is important for the development of new cancer therapies1. However, focus is often given to interactions that occur within the primary tumour and its microenvironment, whereas the role of immune cells during cancer dissemination in patients remains largely uncharacterized2,3. Circulating tumour cells (CTCs) are precursors of metastasis in several types of cancer4-6, and are occasionally found within the bloodstream in association with non-malignant cells such as white blood cells (WBCs)7,8. The identity and function of these CTC-associated WBCs, as well as the molecular features that define the interaction between WBCs and CTCs, are unknown. Here we isolate and characterize individual CTC-associated WBCs, as well as corresponding cancer cells within each CTC-WBC cluster, from patients with breast cancer and from mouse models. We use single-cell RNA sequencing to show that in the majority of these cases, CTCs were associated with neutrophils. When comparing the transcriptome profiles of CTCs associated with neutrophils against those of CTCs alone, we detect a number of differentially expressed genes that outline cell cycle progression, leading to more efficient metastasis formation. Further, we identify cell-cell junction and cytokine-receptor pairs that define CTC-neutrophil clusters, representing key vulnerabilities of the metastatic process. Thus, the association between neutrophils and CTCs drives cell cycle progression within the bloodstream and expands the metastatic potential of CTCs, providing a rationale for targeting this interaction in treatment of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Cell Cycle , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology , Neutrophils/pathology , Animals , Breast Neoplasms/therapy , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Exons/genetics , Female , Gene Expression Profiling , Humans , Intercellular Junctions , Mice , Mutation/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/metabolism , Neutrophils/metabolism , Sequence Analysis, RNA , Exome Sequencing
4.
Cell ; 176(1-2): 98-112.e14, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633912

ABSTRACT

The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.


Subject(s)
Breast Neoplasms/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/pathology , Animals , Breast Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , DNA Methylation/physiology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred NOD , Nanog Homeobox Protein/metabolism , Neoplasm Metastasis/physiopathology , Neoplastic Cells, Circulating/metabolism , Octamer Transcription Factor-3/metabolism , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
5.
Breast Cancer Res ; 20(1): 141, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458879

ABSTRACT

BACKGROUND: The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive. METHODS: We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation. CTCs were quantified with the Parsortix microfluidic device. Clinicopathological variables, blood counts at the time of CTC isolation and detailed treatment history prior to blood sampling were evaluated for each patient. RESULTS: Among 73 patients, we detected at least one CTC per 7.5 ml of blood in 34 (46%). Of these, 22 (65%) had single CTCs only, whereas 12 (35%) featured both single CTCs and CTC clusters. Treatment with the monoclonal antibody denosumab correlated with the absence of CTCs, both when considering all patients and when considering only those with bone metastasis. We also found that low red blood cell count was associated with the presence of CTCs, whereas high CA 15-3 tumor marker, high mean corpuscular volume, high white blood cell count and high mean platelet volume associated specifically with CTC clusters. CONCLUSIONS: In addition to blood count correlatives to single and clustered CTCs, we found that denosumab treatment associates with most patients lacking CTCs from their peripheral circulation. Prospective studies will be needed to validate the involvement of denosumab in the prevention of CTC generation.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Denosumab/pharmacology , Erythrocytes , Neoplastic Cells, Circulating/drug effects , Aged , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Count/methods , Denosumab/therapeutic use , Disease Progression , Female , Humans , Microfluidic Analytical Techniques/methods , Middle Aged , Neoplasm Invasiveness/pathology , Prognosis , Retrospective Studies
6.
Br J Cancer ; 119(4): 487-491, 2018 08.
Article in English | MEDLINE | ID: mdl-30065256

ABSTRACT

Human glioblastoma (GBM) is a highly aggressive, invasive and hypervascularised malignant brain cancer. Individual circulating tumour cells (CTCs) are sporadically found in GBM patients, yet it is unclear whether multicellular CTC clusters are generated in this disease and whether they can bypass the physical hurdle of the blood-brain barrier.  Here, we assessed CTC presence and composition at multiple time points in 13 patients with progressing GBM during an open-label phase 1/2a study with the microtubule inhibitor BAL101553. We observe CTC clusters ranging from 2 to 23 cells and present at multiple sampling time points in a GBM patient with pleomorphism and extensive necrosis, throughout disease progression. Exome sequencing of GBM CTC clusters highlights variants in 58 cancer-associated genes including ATM, PMS2, POLE, APC, XPO1, TFRC, JAK2, ERBB4 and ALK. Together, our findings represent the first evidence of the presence of CTC clusters in GBM.


Subject(s)
Benzimidazoles/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Cells, Circulating/pathology , Oxadiazoles/administration & dosage , Animals , Benzimidazoles/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Count , Cluster Analysis , Disease Progression , Female , Gene Regulatory Networks/drug effects , Genetic Variation , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Mice , Mutation , Neoplastic Cells, Circulating/chemistry , Neoplastic Cells, Circulating/drug effects , Oxadiazoles/pharmacology , Exome Sequencing , Xenograft Model Antitumor Assays
7.
Diagnostics (Basel) ; 8(2)2018 May 09.
Article in English | MEDLINE | ID: mdl-29747380

ABSTRACT

The field of cancer diagnostics has recently been impacted by new and exciting developments in the area of liquid biopsy. A liquid biopsy is a minimally invasive alternative to surgical biopsies of solid tissues, typically achieved through the withdrawal of a blood sample or other body fluids, allowing the interrogation of tumor-derived material including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) fragments that are present at a given time point. In this short review, we discuss a few studies that summarize the state-of-the-art in the liquid biopsy field from a diagnostic perspective, and speculate on current challenges and expectations of implementing liquid biopsy testing for cancer diagnosis and monitoring in the clinical setting.

8.
Stem Cell Reports ; 9(1): 329-341, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28579394

ABSTRACT

Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies.


Subject(s)
Germ Cells/transplantation , Seminiferous Tubules/surgery , Testis/embryology , Testis/transplantation , Animals , Busulfan/therapeutic use , Female , Humans , Immunosuppressive Agents/therapeutic use , Macaca mulatta , Male , Mice, Nude , Transplantation, Heterologous/methods
9.
ESMO Open ; 1(4): e000078, 2016.
Article in English | MEDLINE | ID: mdl-27843628

ABSTRACT

The development of a metastatic disease is recognised as the cause of death of over 90% of patients diagnosed with cancer. Understanding the biological features of metastasis has been hampered for a long time by the difficulties to study widespread cancerous lesions in patients, and by the absence of reliable methods to isolate viable metastatic cells during disease progression. These difficulties negatively impact on our ability to develop new agents that are tailored to block the spread of cancer. Yet, recent advances in specialised devices for the isolation of circulating tumour cells (CTCs), hand-in-hand with technologies that enable single cell resolution interrogation of their genome and transcriptome, are now paving the way to understanding those molecular mechanisms that drive the formation of metastasis. In this review, we aim to summarise some of the latest discoveries in CTC biology in the context of several types of cancer, and to highlight those findings that have a potential to improve the clinical management of patients with metastatic cancer.

10.
Biol Direct ; 11: 33, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27457474

ABSTRACT

UNLABELLED: More than 90 % of cancer-related deaths are due to the development of a systemic metastatic disease. Clearly, much remains to be understood about the biological principles that govern human cancer metastasis, aiming at the ambitious objective to decrease metastasis-related mortality in patients. For many years, research on metastasis has been conducted in great part on experimental mouse models, mainly because of the difficulties in sampling, longitudinal studies, and molecular interrogation of a human metastatic disease. However, recently, extraordinary advances in microfluidic technologies are allowing the isolation and characterization of human circulating tumor cells (CTCs) that escaped a primary tumor mass and are in the process of seeding a distant metastasis. Analysis of human CTCs has now revealed important features of cancer metastasis, such as the high metastatic potential of CTC-clusters compared to single CTCs, the dynamic expression of epithelial and mesenchymal markers on CTCs during treatment, and the possibility to culture CTCs from patients for a real-time and individualized testing of drug susceptibility. Nevertheless, several aspects of CTC biology remain unsolved, such as the characterization of the stem-like cell population among human CTCs. Here, we focus on describing the latest findings in the CTC field, and discuss them in the context of cancer stem cell biology. Defining the molecular features of those few metastasis-initiating, stem-like CTCs holds the exceptional promise to develop metastasis-tailored therapies for patients with cancer. REVIEWERS: This article was reviewed by Elisa Cimetta, Luca Pellegrini and Sirio Dupont (nominated by LP).


Subject(s)
Neoplastic Cells, Circulating/metabolism , Neoplastic Stem Cells/metabolism , Animals , Biomarkers, Tumor/analysis , Humans , Mice
11.
Cell ; 161(6): 1425-36, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004067

ABSTRACT

Global DNA demethylation in humans is a fundamental process that occurs in pre-implantation embryos and reversion to naive ground state pluripotent stem cells (PSCs). However, the extent of DNA methylation reprogramming in human germline cells is unknown. Here, we performed whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq) of human prenatal germline cells from 53 to 137 days of development. We discovered that the transcriptome and methylome of human germline is distinct from both human PSCs and the inner cell mass (ICM) of human blastocysts. Using this resource to monitor the outcome of global DNA demethylation with reversion of primed PSCs to the naive ground state, we uncovered hotspots of ultralow methylation at transposons that are protected from demethylation in the germline and ICM. Taken together, the human germline serves as a valuable in vivo tool for monitoring the epigenome of cells that have emerged from a global DNA demethylation event.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Embryo, Mammalian/metabolism , Germ Cells/metabolism , Blastocyst Inner Cell Mass , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Humans , Male
12.
EMBO J ; 34(6): 748-58, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25519955

ABSTRACT

PRMT5 is a type II protein arginine methyltransferase with roles in stem cell biology, reprograming, cancer and neurogenesis. During embryogenesis in the mouse, it was hypothesized that PRMT5 functions with the master germline determinant BLIMP1 to promote primordial germ cell (PGC) specification. Using a Blimp1-Cre germline conditional knockout, we discovered that Prmt5 has no major role in murine germline specification, or the first global epigenetic reprograming event involving depletion of cytosine methylation from DNA and histone H3 lysine 9 dimethylation from chromatin. Instead, we discovered that PRMT5 functions at the conclusion of PGC reprograming I to promote proliferation, survival and expression of the gonadal germline program as marked by MVH. We show that PRMT5 regulates gene expression by promoting methylation of the Sm spliceosomal proteins and significantly altering the spliced repertoire of RNAs in mammalian embryonic cells and primordial cells.


Subject(s)
Cell Differentiation/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Germ Cells/cytology , Protein Methyltransferases/metabolism , Transcription Factors/genetics , Animals , Blotting, Western , Computational Biology , DNA Methylation , DNA Primers/genetics , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockout Techniques , Genotype , Germ Cells/enzymology , Mice , Positive Regulatory Domain I-Binding Factor 1 , Protein-Arginine N-Methyltransferases , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Spliceosomes/metabolism
13.
Cell Stem Cell ; 15(4): 393-394, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25280211

ABSTRACT

In stem cell biology, the dynamic addition and removal of 5-methylcytosines (5mCs) are necessary for lineage differentiation, nuclear reprogramming, and embryonic development. Recent investigations have sought to understand the mechanisms of how 5mCs are added and in particular how 5mCs are removed from DNA during embryogenesis.


Subject(s)
Cell Nucleus/metabolism , DNA Methylation/genetics , Mammals/genetics , Animals , Female , Male
14.
Stem Cell Rev Rep ; 10(2): 230-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24477620

ABSTRACT

Human pluripotent stem cells (PSCs) are critical in vitro tools for understanding mechanisms that regulate lineage differentiation in the human embryo as well as a potentially unlimited supply of stem cells for regenerative medicine. Pluripotent human and mouse embryonic stem cells (ESCs) derived from the inner cell mass of blastocysts share a similar transcription factor network to maintain pluripotency and self-renewal, yet there are considerable molecular differences reflecting the diverse environments in which mouse and human ESCs are derived. In the current study we evaluated the role of Protein arginine methyltransferase 5 (PRMT5) in human ESC (hESC) self-renewal and pluripotency given its critical role in safeguarding mouse ESC pluripotency. Unlike the mouse, we discovered that PRMT5 has no role in hESC pluripotency. Using microarray analysis we discovered that a significant depletion in PRMT5 RNA and protein from hESCs changed the expression of only 78 genes, with the majority being repressed. Functionally, we discovered that depletion of PRMT5 had no effect on expression of OCT4, NANOG or SOX2, and did not prevent teratoma formation. Instead, we show that PRMT5 functions in hESCs to regulate proliferation in the self-renewing state by regulating the fraction of cells in Gap 1 (G1) of the cell cycle and increasing expression of the G1 cell cycle inhibitor P57. Taken together our data unveils a distinct role for PRMT5 in hESCs and identifies P57 as new target.


Subject(s)
Cell Proliferation , Embryonic Stem Cells/physiology , Protein-Arginine N-Methyltransferases/physiology , Animals , Cell Differentiation , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Embryonic Stem Cells/transplantation , G1 Phase Cell Cycle Checkpoints , Gene Expression , Humans , Mice , Mice, SCID , Teratoma/pathology
15.
Nat Cell Biol ; 15(1): 113-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23242216

ABSTRACT

The generation of research-quality, clinically relevant cell types in vitro from human pluripotent stem cells requires a detailed understanding of the equivalent human cell types. Here we analysed 134 human embryonic and fetal samples from 6 to 20 developmental weeks and identified the stages at which cKIT(+) primordial germ cells (PGCs), the precursors of gametes, undergo whole-genome epigenetic reprogramming with global depletion of 5mC, H3K27me3 and H2A.Z, and the time at which imprint erasure is initiated and 5hmC is present. Using five alternative in vitro differentiation strategies combined with single-cell microfluidic analysis and a bona fide human cKIT(+) PGC signature, we show the stage of cKIT(+) PGC formation in the first 16 days of differentiation. Taken together, our study creates a resource of human germ line ontogeny that is essential for future studies aimed at in vitro differentiation and unveiling the mechanisms necessary to pass human DNA from one generation to the next.


Subject(s)
Cell Differentiation , Genomic Imprinting , Germ Cells/metabolism , Germ Cells/physiology , Proto-Oncogene Proteins c-kit/metabolism , Cells, Cultured , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA Methylation , Embryo, Mammalian/cytology , Embryonic Stem Cells/metabolism , Female , Fetus/cytology , Gene Expression Regulation, Developmental , Histones/metabolism , Humans , Male , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Ovary/cytology , Ovary/embryology , Ovary/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-kit/genetics , Single-Cell Analysis , Testis/cytology , Testis/embryology , Testis/metabolism , Transcriptome
16.
Bio Protoc ; 3(12)2013 Jun 20.
Article in English | MEDLINE | ID: mdl-27441203

ABSTRACT

High throughput RNA Sequencing has revolutionized transcriptome analyses. However, most available protocols require micrograms of RNA rendering this technique not feasible for analyzing small numbers of cells, including precious rare cell types isolated from human tissues or organs. Here, we used an RNA Amplification System and describe a method for preparing RNA sense-strand cDNA libraries compatible with an Illumina sequencing platform starting from limited numbers of human fetal germ cells as well as human embryonic stem cells (hESCs) isolated using Fluorescence Activated Cell Sorting (FACS). With this protocol we generated seven RNA-Seq libraries starting from 4,000 germ cells sorted from fetal ovaries (n = 2) and fetal testes (n = 2) at 16-16.5 weeks of development and 4,000 sorted hESCs (n = 3). We predict that multiplexed libraries can also be generated by replacing the single-plex 3' adapter used here with a multiplexing compatible 3' adapter and indexed PCR primers.

17.
PLoS One ; 6(12): e28960, 2011.
Article in English | MEDLINE | ID: mdl-22194959

ABSTRACT

The cell intrinsic programming that regulates mammalian primordial germ cell (PGC) development in the pre-gonadal stage is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs) from mouse embryonic stem cells (ESCs). Using labeling for SSEA1 and cKit, two cell surface molecules used previously to isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we determined that selecting for cKit(bright) cells within the SSEA1+ fraction significantly enriches for the putative iPGC population. Single cell analysis comparing SSEA1+/cKit(bright) iPGCs to ESCs and embryonic PGCs demonstrates that 97% of single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5-10.5 PGCs, whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKit(bright) iPGCs. Taken together, the generation of Blimp1-positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-positive stage of development.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Germ Cells/cytology , Germ Cells/metabolism , Single-Cell Analysis/methods , Transcription Factors/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Separation , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gonads/cytology , Lewis X Antigen/metabolism , Mesoderm/metabolism , Mice , Models, Biological , Octamer Transcription Factor-3/metabolism , Oligonucleotide Array Sequence Analysis , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-kit/metabolism , Transcription, Genetic , Transgenes
18.
Nucleic Acids Res ; 37(20): 6950-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19755500

ABSTRACT

Human Adenovirus type 5 encodes two short RNA polymerase III transcripts, the virus-associated (VA) RNAI and VA RNAII, which can adopt stable hairpin structures that resemble micro-RNA precursors. The terminal stems of the VA RNAs are processed into small RNAs (mivaRNAs) that are incorporated into RISC. It has been reported that VA RNAI has two transcription initiation sites, which produce two VA RNAI species; a major species, VA RNAI(G), which accounts for 75% of the VA RNAI pool, and a minor species, VA RNAI(A), which initiates transcription three nucleotides upstream compared to VA RNAI(G). We show that this 5'-heterogeneity results in a dramatic difference in RISC assembly. Thus, both VA RNAI(G) and VA RNAI(A) are processed by Dicer at the same position in the terminal stem generating the same 3'-strand mivaRNA. This mivaRNA is incorporated into RISC with 200-fold higher efficiency compared to the 5'-strand of mivaRNAI. Of the small number of 5'-strands used in RISC assembly only VA RNAI(A) generated active RISC complexes. We also show that the 3'-strand of mivaRNAI, although being the preferred substrate for RISC assembly, generates unstable RISC complexes with a low in vitro cleavage activity, only around 2% compared to RISC assembled on the VA RNAI(A) 5'-strand.


Subject(s)
Adenoviruses, Human/genetics , RNA Interference , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Induced Silencing Complex/metabolism , Mutation , Phosphorylation , Ribonuclease III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...