Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4730, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830905

ABSTRACT

The quantum regression theorem states that the correlations of a system at two different times are governed by the same equations of motion as the single-time averages. This provides a powerful framework for the investigation of the intrinsic microscopic behaviour of physical systems by studying their macroscopic response to a controlled external perturbation. Here we experimentally demonstrate that the two-time particle number correlations in a photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the same dynamics as the response of the condensate to a sudden perturbation of the dye molecule bath. This confirms the regression theorem for a quantum gas, and, moreover, demonstrates it in an unconventional form where the perturbation acts on the bath and only the condensate response is monitored. For strong perturbations, we observe nonlinear relaxation dynamics which our microscopic theory relates to the equilibrium fluctuations, thereby extending the regression theorem beyond the regime of linear response.

3.
Nano Lett ; 22(17): 7151-7157, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35980177

ABSTRACT

Flux quantization has been widely regarded as the hallmark of the macroscopic quantum state of superconductivity. However, practical design of superconductor devices exploiting finite size confinement effects may induce exotic phenomena, including nonquantized vortices. In our research, the magnetic flux of vortices has been studied in a series of superconducting strips as a function of the strip width and the penetration depth. In both circumstances, the observation using scanning Hall probe microscope (SHPM) displays a controlled evolution from singly quantized vortices to nonquantized ones. It is also found that the magnetic flux is immune to the flowing supercurrent. The simulations based on Ginzburg-Landau theory agree well with experimental results. The observed behavior of the vortex flux may open new perspectives for fundamental research and applications based on vortex matter, such as vortex-memory devices and magnetic field traps for ultracold atoms.

4.
Phys Rev Lett ; 125(21): 215301, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274963

ABSTRACT

We present a theoretical study of vortices in arrays of photon condensates. Even when interactions are negligible, as is the case in current experiments, pumping and losses can lead to a finite vortex core size. While some properties of photon condensate vortices, such as their self-acceleration and the generation of vortex pairs by a moving vortex resemble those in lasers and interacting polariton condensates far from equilibrium, in several aspects they differ from previously studied systems: the vortex core size is determined by the balance between pumping and tunneling, the core appears oblate in the direction of its motion, and new vortex pairs can spontaneously nucleate in the core region.

5.
Nat Commun ; 9(1): 2576, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968732

ABSTRACT

Design and manipulation of magnetic moment arrays have been at the focus of studying the interesting cooperative physical phenomena in various magnetic systems. However, long-range ordered magnetic moments are rather difficult to achieve due to the excited states arising from the relatively weak exchange interactions between the localized moments. Here, using a nanostructured superconductor, we investigate a perfectly ordered magnetic dipole pattern with the magnetic poles having the same distribution as the magnetic charges in an artificial spin ice. The magnetic states can simply be switched on/off by applying a current flowing through nanopatterned area. Moreover, by coupling magnetic dipoles with the pinned vortex lattice, we are able to erase the positive/negative poles, resulting in a magnetic dipole pattern of only one polarity, analogous to the recently predicted vortex ice. These switchable and tunable magnetic dipole patterns open pathways for the study of exotic ordering phenomena in magnetic systems.

6.
Nano Lett ; 17(8): 5003-5007, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28693319

ABSTRACT

Quantized vortices, as topological defects, play an important role in both physics and technological applications of superconductors. Normally, the nucleation of vortices requires the presence of a high magnetic field or current density, which allow the vortices to enter from the sample boundaries. At the same time, the controllable generation of individual vortices inside a superconductor is still challenging. Here, we report the controllable creation of single quantum vortices and antivortices at any desirable position inside a superconductor. We exploit the local heating effect of a scanning tunneling microscope (STM) tip: superconductivity is locally suppressed by the tip and vortex-antivortex pairs are generated when supercurrent flows around the hot spot. The experimental results are well-explained by theoretical simulations within the Ginzburg-Landau approach.

7.
Nat Commun ; 7: 13880, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934960

ABSTRACT

Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations.

8.
Nat Commun ; 6: 6573, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25775263

ABSTRACT

One of the phenomena that make superconductors unique materials is the Meissner-Ochsenfeld effect. This effect results in a state in which an applied magnetic field is expelled from the bulk of the material because of the circulation near its surface of resistance-free currents, also known as Meissner currents. Notwithstanding the intense research on the Meissner state, local fields due to the interaction of Meissner currents with pinning centres have not received much attention. Here we report that the Meissner currents, when flowing through an area containing a pinning centre, generate in its vicinity two opposite sense current half-loops producing a bound vortex-antivortex pair, which eventually may transform into a fully developed vortex-antivortex pair ultimately separated in space. The generation of such vortex dipoles by Meissner currents is not restricted to superconductors; similar topological excitations may be present in other systems with Meissner-like phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...