ABSTRACT
Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.
Subject(s)
COVID-19 , NF-kappa B , Humans , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Endothelial Cells/metabolism , Post-Acute COVID-19 Syndrome , COVID-19/metabolism , Brain , Blood-Brain Barrier , Mitochondria/metabolismABSTRACT
COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
Subject(s)
COVID-19 , Aged , Blood-Brain Barrier , Brain , Endothelial Cells , Humans , SARS-CoV-2ABSTRACT
The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.
Subject(s)
Elongation Factor 2 Kinase/metabolism , Homer Scaffolding Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Protein Biosynthesis/physiology , Animals , Bicuculline/pharmacology , Cells, Cultured , GABA-A Receptor Antagonists/pharmacology , Humans , Mice , Phosphorylation , Protein Biosynthesis/drug effects , Signal Transduction/drug effectsABSTRACT
The NMDA receptor is crucial to several functions in CNS physiology and some of its effects are mediated by promoting nitric oxide production from L-arginine and activation of signaling pathways and the transcription factor CREB. Our previous work demonstrated in retinal cells that increasing intracellular free L-arginine levels directly correlates to nitric oxide (NO) generation and can be promoted by protein synthesis inhibition and increase of free L-arginine concentration. Eukaryotic elongation factor 2 kinase (eEF2K), a calcium/calmodulin-dependent kinase, is also known to be activated by NMDA receptors leading to protein synthesis inhibition. Here we explored how does eEF2K participate in NMDA-induced NO signaling. We found that when this enzyme is inhibited, NMDA loses its ability to promote NO synthesis. On the other hand, when NO synthesis is increased by protein synthesis inhibition with cycloheximide or addition of exogenous L-arginine, eEF2K has no participation, showcasing a specific link between this enzyme and NMDA-induced NO signaling. We have previously shown that inhibition of the canonical NO signaling pathway (guanylyl cyclase/cGMP/cGK) blocks CREB activation by glutamate in retinal cells. Interestingly, pharmacological inhibition of eEF2K fully prevents CREB activation by NMDA, once again demonstrating the importance of eEF2K in NMDA receptor signaling. In summary, we demonstrated here a new role for eEF2K, directly controlling NMDA-dependent nitrergic signaling and modulating L-arginine availability in neurons, which can potentially be a new target for the study of physiological and pathological processes involving NMDA receptors in the central nervous system.
Subject(s)
Central Nervous System/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Elongation Factor 2 Kinase/metabolism , N-Methylaspartate/pharmacology , Nitric Oxide/biosynthesis , Animals , Arginine/pharmacology , Chickens , Cycloheximide/pharmacology , Elongation Factor 2 Kinase/antagonists & inhibitors , Indazoles/pharmacology , Male , Phosphorylation/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , RatsABSTRACT
Nitric oxide (NO) is a very reactive molecule, and its short half-life would make it virtually invisible until its discovery. NO activates soluble guanylyl cyclase (sGC), increasing 3',5'-cyclic guanosine monophosphate levels to activate PKGs. Although NO triggers several phosphorylation cascades due to its ability to react with Fe II in heme-containing proteins such as sGC, it also promotes a selective posttranslational modification in cysteine residues by S-nitrosylation, impacting on protein function, stability, and allocation. In the central nervous system (CNS), NO synthesis usually requires a functional coupling of nitric oxide synthase I (NOS I) and proteins such as NMDA receptors or carboxyl-terminal PDZ ligand of NOS (CAPON), which is critical for specificity and triggering of selected pathways. NO also modulates CREB (cAMP-responsive element-binding protein), ERK, AKT, and Src, with important implications for nerve cell survival and differentiation. Differences in the regulation of neuronal death or survival by NO may be explained by several mechanisms involving localization of NOS isoforms, amount of NO being produced or protein sets being modulated. A number of studies show that NO regulates neurotransmitter release and different aspects of synaptic dynamics, such as differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, and modulation of synaptic efficacy. NO has also been associated with synaptogenesis or synapse elimination, and it is required for long-term synaptic modifications taking place in axons or dendrites. In spite of tremendous advances in the knowledge of NO biological effects, a full description of its role in the CNS is far from being completely elucidated.