Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(9): 095206, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33197904

ABSTRACT

We demonstrate that single-walled carbon nanotube (SWCNT) membranes can be successfully utilized as nanometer-thick substrates for enhanced visualization and facilitated study of individual nanoparticles. As model objects, we transfer optically resonant 200 nm silicon nanoparticles onto pristine and ethanol-densified SWCNT membranes by the femtosecond laser printing method. We image nanoparticles by scanning electron and bright-field optical microscopy, and characterize by linear and Raman scattering spectroscopy. The use of a pristine SWCNT membrane allows to achieve an order-of-magnitude enhancement of the optical contrast of the nanoparticle bright field image over the results shown in the case of the glass substrate use. The observed optical contrast enhancement is in agreement with the spectrophotometric measurements showing an extremely low specular reflectance of the pristine membrane (≤0.1%). Owing to the high transparency, negligibly small reflectance and thickness, SWCNT membranes offer a variety of perspective applications in nanophotonics, bioimaging and synchrotron radiation studies.

2.
Opt Express ; 24(25): 28768-28773, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958520

ABSTRACT

This work for the first time reports the results on study of a polymer-free carbon nanotube (CNT) films used as a saturable absorber in an all-fibre laser. It is demonstrated that free-standing single-walled CNT films fabricated by an aerosol method are able to ensure generation of transform-limited pulses in an Er all-fibre ring laser with duration of several picoseconds and high quality of mode locking. The optimal average output power levels are identified, amounting to 0.4-0.5 mW depending on the linear transmission of the studied samples (60% or 80%). Application of polymer-free CNT films solves problems related to degradation of conventional polymer matrices of CNT-based saturable absorbers and paves the way to longer-lasting and more reliable saturable absorbers compatible with all-fibre laser configurations.

SELECTION OF CITATIONS
SEARCH DETAIL
...