Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4488, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396043

ABSTRACT

Plant-based beverages (PBs) are currently gaining interest among consumers who are seeking alternative sustainable options to traditional dairy drinks. The study aimed to obtain powdered plant beverages without the addition of carriers by spray drying method to implement them in the future as an alternative to the liquid form of dairy drinks. Some of the most well-known commercial beverages sources like soy, almond, rice and oat were analyzed in this work. The effect of different treatments (concentration, addition of oat fiber) and two approaches od spray drying (conventional high temperature spray drying-SD, and dehumidified air spray drying at low temperature-DASD) were presented. Moreover, moisture content, water activity, particle morphology and size of obtained powders were analyzed. It was possible to obtain PBs without the addition of carriers, although the drying yield of four basic beverages was low (16.1-37.4%). The treatments and change in spray drying approach enhanced the drying yield, especially for the concentrated beverage dried using DASD (59.2%). Additionally, Fourier Transform Infrared (FTIR) spectroscopy was applied to evaluate the differences in chemical composition of powdered PBs. FTIR analysis revealed differences in the range of the absorption frequency of amide I, amide II (1700-1500 cm-1) and carbohydrate region (1200-900 cm-1). Principal component analysis (PCA) was carried out to study the relationship between spray dried plant beverages samples based on the fingerprint region of FTIR spectra, as well as the physical characteristics. Additionally, hierarchical cluster analysis (HCA) was employed to explore the clustering of the powders.


Subject(s)
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives , Chemometrics , Desiccation , Beverages , Amides , Powders , Particle Size
2.
Molecules ; 28(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687155

ABSTRACT

The FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores yielded clear separation between the four classes of samples and showed very good discrimination between the wine samples, with a 91.7% overall classification rate for the samples. The conducted FTIR spectroscopy studies coupled with chemometrics allowed for the swift analysis of multiple wine components with minimal sample preparation. These methods can be used in research to improve specific properties of these wines, which will undoubtedly enhance the quality of the final wine samples obtained.


Subject(s)
Wine , Spectroscopy, Fourier Transform Infrared , Czech Republic , Chemometrics , Spectrophotometry, Infrared
3.
Sci Rep ; 11(1): 19256, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584176

ABSTRACT

Addressing the issues arising from the production and trade of low-quality foods necessitates developing new quality control methods. Cooking oils, especially those produced from the grape seeds, are an example of food products that often suffer from questionable quality due to various adulterations and low-quality fruits used for their production. Among many methods allowing for fast and efficient food quality control, the combination of experimental and advanced mathematical approaches seems most reliable. In this work a method for grape seed oils compositional characterization based on the infrared (FTIR) spectroscopy and fatty acids profile is reported. Also, the relevant parameters of oils are characterized using a combination of standard techniques such as the Principal Component Analysis, k-Means, and Gaussian Mixture Model (GMM) fitting parameters. Two different approaches to perform unsupervised clustering using GMM were investigated. The first approach relies on the profile of fatty acids, while the second is FT-IR spectroscopy-based. The GMM fitting parameters in both approaches were compared. The results obtained from both approaches are consistent and complementary and provide the tools to address the characterization and clustering issues in grape seed oils.

4.
Sci Rep ; 10(1): 16269, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004933

ABSTRACT

This work aimed at the chemical and structural characterization of powders obtained from chestnut flower honey (HFCh) and honey with Inca berry (HBlu). Honey powders were obtained by spray drying technique at low temperature (80/50 °C) with dehumidified air. Maltodextrin (DE 15) was used as a covering agent. The isolation and evaluation of phenolic compounds and sugars were done by gas chromatography-mass spectrometry analysis. Scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction were performed to determine the morphology of the studied honey powders. The obtained results showed that the content of simple sugars amounted to 72.4 and 90.2 g × 100 g-1 in HFCh and HBlu, respectively. Glucose was found to be the dominant sugar with a concentration of 41.3 and 51.6 g × 100 g-1 in HFCh and HBlu, respectively. 3-Phenyllactic acid and ferulic acid were most frequently found in HFCh powder, whereas m-coumaric acid, benzoic acid, and cinnamic acid were the most common in HBlu powder. The largest changes in the FTIR spectra occurred in the following range of wavenumbers: 3335, 1640, and below 930 cm-1. The X-ray diffraction profiles revealed wide peaks, suggesting that both honey powders are amorphous and are characterized by a short-range order only.


Subject(s)
Honey/analysis , Phenols/analysis , Sugars/analysis , Gas Chromatography-Mass Spectrometry , Powders , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Molecules ; 25(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933032

ABSTRACT

In our previous work, we discussed the emergence of the dual fluorescence phenomenon in selected compounds from the group of 1,3,4-thiadiazoles. The results obtained in a number of experimental studies, supported by [TD]DFT calculations, clearly indicated that the phenomenon of dual fluorescence stemmed from an overlap of several factors, including the correct conformation of the analyzed molecule and, very significantly in this context, aggregation effects. Where those two conditions were met, we could observe the phenomenon of intermolecular charge transfer (CT) and the emergence of electronic states responsible for long wave emissions. However, in light of the new studies presented in this paper, we were able, for the first time, to provide a specific theory for the effect of dual fluorescence observed in the analyzed group of 1,3,4-thiadiazoles. We present the results of spectroscopic measurements conducted for two selected analogues from the 1,3,4-thiadiazole group, both in polar and non-polar solvents, which clearly evidence (as we have already suspected in the past, albeit have not shown in publications to date) the possibility of processes related to emission from the tautomer formed in the process of excited state intramolecular proton transfer, which is responsible for the long-wavelength emissions observed in the selected analogues. The presented results obtained with the use of UV-Vis, fluorescence (stationary and time-resolved), FTIR, and Raman spectroscopy, as well as from calculations of dipole moment changes between the ground and excited state with the use of two derivatives with different structures of the resorcylic system, corroborated our standing hypothesis. At the same time, they excluded the presence of ground state keto forms of the analyzed analogues unless necessitated by the structure of the molecule itself. In this case, aggregation factors enhance the observed effects related to the dual fluorescence of the analyzed compounds (by way of AIE-aggregated induced emissions).


Subject(s)
Fluorescence , Photochemistry/methods , Protons , Thiadiazoles/chemistry , Chemistry Techniques, Synthetic , Chemistry, Organic/methods , Electrons , Fluorobenzenes/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Molecular Conformation , Nitrogen , Photons , Solvents , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
6.
PLoS One ; 15(2): e0229149, 2020.
Article in English | MEDLINE | ID: mdl-32097423

ABSTRACT

The paper presents the results of studies conducted with the use of stationary and time-resolved fluorescence spectroscopy for the new derivative 2-Hydroxy-N-(2-phenylethyl)benzamide (SAL-3) in aqueous solutions with various concentrations of hydrogen ions as well as in solvent mixtures (i.e. media with changing polarity/polarizability). For the compound selected for the study placed in aqueous solutions with varying concentrations of hydrogen ions, the fluorescence emission spectra revealed a single emission band within most of the pH range, however, at low pH (pH<3) a significant broadening (noticeable effect of dual fluorescence) and shifting of the band was observed. Whereas, for water and polar (protic) solvents, we observed a very interesting phenomenon of dual fluorescence never before reported for this particular group of analogues (with the specific substituent system). Based on the results of the experiments, it was observed that the presented effects may be related both with conformational effects (related to the possible positioning of the-OH group on the side of the carbonyl system, which facilitates the possibility of proton transfer) as well as, most importantly, the effects of excited state intramolecular proton transfer (ESIPT-Excited State Intramolecular Proton Transfer) related in this case with the necessary (new/previously unobserved in published literature) presence of ionic and non-ionic forms of the compound). Both the conducted quantum-mechanical [TD]DFT-Time-Dependent Density Functional Theory) calculations and excited state dipole moment change calculations for the analyzed molecule in solvents with varying pH confirmed the association between the observed fluorescence phenomena and the two aforementioned effects.


Subject(s)
Benzamides/chemistry , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Solvents/chemistry
7.
Polymers (Basel) ; 12(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906525

ABSTRACT

The aim of study was to investigate the influence of kaolin on the physical properties and utility of film produced from native starch. The work involved measurements of strength, structure, and thermal properties. The films were prepared by the casting method. Composite films with 0%, 5%, 10%, and 15% kaolin additives were examined. Measurements of mechanical properties were carried out using the uniaxial tensile test, the nanoindentation test, and nanoscratching. Surface properties were examined by atomic force microscopy and contact angle measurements. Structure was determined by the X-ray diffraction method, and thermal properties were determined by differential scanning calorimetry. A significant influence of kaolin on the strength parameters and thermal and barrier properties of composite films was found. An increase in kaolin content reduced the tensile strength, Young's modulus, and Poisson's ratio. Structural analysis showed a partial intercalation and the layered arrangement of kaolin particles. Kaolin additives increased the barrier properties of water vapor in composite films of about 9%. Biopolymer modification by nanoclay reduced the thermal stability of composite films by 7% and could accelerate the biodegradation process. Increasing the concentration of kaolin in the biopolymer matrix led to heightened surface roughness (approximately 64%) and wettability of the surfaces of the film composites of 58%.

8.
Sci Rep ; 9(1): 4287, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862899

ABSTRACT

The seasonal senescence of leaves in the phenological cycle coincides with the change of their strength properties which determine resistance to environmental conditions and the efficiency of the photosynthesis process. That affects the development, growth and condition of the plant. Therefore, the aim of this paper was to observe and compare the results of strength tests performed on the leaves of two species of trees popular in Poland - lime and maple. As well as chlorophyll fluorescence and photosynthetic pigments content in the context of the changes occurring during the entire leaf life cycle. Obtained results showed that the strength properties of the tested leaves reached the minimum values in spring and the maximum in the summer similarly to the leaf greenness index. Whereas the fluorescence increased which the seasonal senescence in opposition to the photosynthesis efficiency of the leaves. Collected data revealed that strength parameters and photosynthetic pigment content were significantly higher for maple leaves than for lime leaves. Studies showed differences between physiological and mechanical properties of the leaves of two trees species, even if they grew under the same environmental conditions. It is concluded from the results that phenotype and physical parameters of leaves are related to seasonal senescence.


Subject(s)
Acer/chemistry , Plant Leaves/chemistry , Tilia/chemistry , Carotenoids/chemistry , Chlorophyll/metabolism , Fluorescence , Phenotype , Photosynthesis/genetics , Photosynthesis/physiology , Seasons
9.
PLoS One ; 14(2): e0212070, 2019.
Article in English | MEDLINE | ID: mdl-30759170

ABSTRACT

The paper presents the results of studies related to the impact of functional additives in the form of polylactide (PLA), polyvinyl alcohol (PVA), and keratin hydrolysate (K) on the physical characteristics of biopolymer foils. TPS granulate was obtained using a TS-45 single-screw extruder with L/D = 16. Foil was produced with the use of an L/D = 36 extruder with film-blowing section. The impact of the quantity and type of the functional additives on the processing efficiency and energy consumption of granulate extrusion, as well as the physical characteristics of the foil produced: thickness, basis weight, and colour were determined. By measuring the FTIR spectra it was determined the type and origin of the respective functional groups. It was observed that foils produced from granulates with the addition of 3% PVA were characterised by the lowest thickness and basis weight. Addition of 2 and 3% of PLA increased thickness and basis weight of starch-based foils significantly. Increasing the content of keratin in SG/K samples resulted in a decrease of brightness and intensify the yellow tint of foils, especially when 2 and 3% of keratin was used. In terms of the other samples, it was observed that the colour remained almost unchanged irrespective of the percentage content of the additive used. Infrared analyses conducted on foil containing PVA, PLA, and K revealed a change in spectra intensity in the frequency range associated with-OH groups originating from the forming free, intra- and intermolecular hydrogen bonds. Based on an analysis of the respective bands within the IR range it was also concluded that considerable structural changes took place with respect to the glycosidic bonds of starch itself. The application of the mentioned additives had a significant structural impact on the produced starch-based foils. Furthermore, the conducted UV-Vis analyses revealed a substantial increase in absorbance and a related reduction of the permeability (colour change) of the obtained materials in the range of ultraviolet and visible light.


Subject(s)
Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Biopolymers/chemistry , Keratins/chemistry , Principal Component Analysis
10.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400242

ABSTRACT

The article presents the results of spectroscopic studies focused on a selected compound from the 1,3,4-thiadiazole group-2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thia-diazole (FABT)-in a micellar system formed by Triton X-100, a non-ionic detergent. Fluorescence measurements revealed the phenomenon of dual fluorescence whose emergence is related to the particular molecular organisation of the compound, which depends both on the concentration of the detergent and, most of all, the concentration of the compound itself. Dual fluorescence of FABT in a micellar system was observed for the compound dissolved in a methanol aqueous system, i.e., an environment wherein the dual fluorescence of the compound had never been reported before. Based on the interpretation of UV-Vis electronic absorption, resonance light scattering (RLS), emission and excitation fluorescence spectra, as well as measurements of dynamic light scattering (DLS) and Principal Component Analysis (PCA), we were able to relate the occurrence of this effect to the process of molecular aggregation taking place between FABT molecules in the micellar system in question. Results of fluorescence spectra measurements and time-correlated single photon counting (TCSPC) indicate that dual fluorescence occurs at detergent concentrations necessary to form micellar systems, which in turn facilitate the process of aggregation of FABT molecules. The correlation between the observed fluorescence effects and the previous measurements performed for analogues from this group suggests the possibility of charge transfer (CT) within the range of detergent concentrations wherein the aforementioned fluorescence effects are observed. It ought to be emphasised that this type of fluorescence effects are relatively easy to induce, which predisposes this groups of fluorophores as ideal fluorescence probes in the context of biological samples.


Subject(s)
Micelles , Spectrometry, Fluorescence , Thiadiazoles/chemistry , Dynamic Light Scattering , Principal Component Analysis , Spectrometry, Fluorescence/methods
11.
J Trace Elem Med Biol ; 42: 103-110, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28595781

ABSTRACT

Copper is required for normal functioning of all basic biochemical and physiological processes in the body. The objective of this study was to compare the effect of two different chemical forms (carbonate and nanoparticles) of Cu administered in feed mixtures to growing rats on bone geometric and structural parameters as well as material characteristics in a rat model. For this purpose, five experimental treatments were used to evaluate the effects of different levels of Cu applied in the diet as a mineral mixture (the standard dose of 6.5mg/kg diet, half the standard dose, and no Cu in mineral mixture as a negative control) and two Cu sources (CuCO3 - commonly used in rodent laboratory diets and a Cu-NP nanoparticle preparation, 40nm). There were no changes in body weight and bone morphology, but significant alteration was noted in the geometry and mechanical parameters, which was Cu-NP-dose dependent. Our study showed an increase in the ultimate load and toughness in Cu-NP-treated rats at the standard concentration. The higher values of the studied parameters prove that there was a change in bone mineralization. Although bone mineral density and content were not changed, bone tissue density and ash increased. The XRD analysis revealed that some peaks did not originate from hydroxyapatite, and they indicated existence of other mineral phases. No studies conducted so far have provided a detailed mechanical X-ray diffraction analysis of bone tissue of growing rats administered with diet containing Cu nanoparticles. This study showed that Cu-NP given in low dose increased mechanical endurance of bone, without the changes in strain and stress compared to low dose of Cu given in traditional form.


Subject(s)
Bone and Bones/anatomy & histology , Copper/pharmacology , Diet , Metal Nanoparticles/chemistry , Animals , Biomechanical Phenomena/drug effects , Body Weight , Bone and Bones/drug effects , Copper/blood , Feeding Behavior , Male , Models, Animal , Organ Size , Rats, Wistar , X-Ray Diffraction
12.
J Phys Chem A ; 121(7): 1402-1411, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28132511

ABSTRACT

Three novel 1,3,4-tiadiazole-derived compounds with biological-activity, i.e., 4-(5-(methylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (MDFT), 4-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (PhATB), and 4-(5-(4-chlorophenylamino)-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (4-CIPhATB) were characterized with the use of several spectroscopic methods. Detailed UV-vis studies revealed keto/enol tautomerism of the examined compounds. The absorption spectra recorded in nonpolar solvents exhibited bands that were characteristic of keto tautomers, while in polar solvents the enol form is predominant. A number of spectra revealed the presence of both tautomeric forms in the solution. The keto/enol equilibria observed were both solvent- and temperature-dependent. The keto/enol equilibrium was also observed using FTIR spectroscopy. A detailed analysis of the spectroscopic data leads to a conclusion that the solvent-induced tautomerism of the selected compounds from the 1,3,4-thiadiazole group does not depend on the electric dipole moment of the solvent but more likely on its average electric polarizability. Additionally, a clear effect of the substituent present in the molecule on the tautomeric equilibrium in the selected 1,3,4-thiadiazole analogues was noted.

SELECTION OF CITATIONS
SEARCH DETAIL
...