Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 18(8): 1150-1163, 2017 10.
Article in English | MEDLINE | ID: mdl-27528575

ABSTRACT

Penicillium expansum, the causal agent of blue mould rot, is a critical health concern because of the production of the mycotoxin patulin in colonized apple fruit tissue. Although patulin is produced by many Penicillium species, the factor(s) activating its biosynthesis are not clear. Sucrose, a key sugar component of apple fruit, was found to modulate patulin accumulation in a dose-responsive pattern. An increase in sucrose culture amendment from 15 to 175 mm decreased both patulin accumulation and expression of the global regulator laeA by 175- and five-fold, respectively, whilst increasing expression of the carbon catabolite repressor creA. LaeA was found to regulate several secondary metabolite genes, including the patulin gene cluster and concomitant patulin synthesis in vitro. Virulence studies of ΔlaeA mutants of two geographically distant P. expansum isolates (Pe-21 from Israel and Pe-T01 from China) showed differential reduction in disease severity in freshly harvested fruit, ranging from no reduction for Ch-Pe-T01 strains to 15%-25% reduction for both strains in mature fruit, with the ΔlaeA strains of Is-Pe-21 always showing a greater loss in virulence. The results suggest the importance of abiotic factors in LaeA regulation of patulin and other secondary metabolites that contribute to pathogenicity.


Subject(s)
Fungal Proteins/metabolism , Penicillium/metabolism , Penicillium/pathogenicity , Secondary Metabolism , Sucrose/pharmacology , Colony Count, Microbial , Gene Expression Regulation, Fungal/drug effects , Malus/microbiology , Multigene Family , Mutation/genetics , Patulin/biosynthesis , Penicillium/drug effects , Penicillium/genetics , Virulence/drug effects
2.
BMC Genomics ; 17: 330, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27146851

ABSTRACT

BACKGROUND: Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. RESULTS: We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. CONCLUSIONS: Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness.


Subject(s)
Fungal Proteins/genetics , Gene Expression Profiling/methods , Malus/microbiology , Penicillium/growth & development , Plant Proteins/genetics , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Hydrogen-Ion Concentration , Malus/genetics , Multigene Family , Penicillium/genetics , Principal Component Analysis , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...