Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 119: 104027, 2023 09.
Article in English | MEDLINE | ID: mdl-37634907

ABSTRACT

Early aseptic loosening following primary total knee arthroplasty related to several factors might appear at the interface implant-cement or cement-bone. A standardized in vitro model might provide information on the relevance of single variable parameter of cementation including technique and cement respectively bone structure on fixation strength. Micromotion measurement using different directions of load should detect the primary stability of the interfaces. An open-cell rigid foam model was used for cementation of PFC-Sigma tibial trays with Palacos®. Pins were applied to the model for continuous non-destructive measurement. Relative micromotions for rotation, valgus-varus and extension flexion stress were detected at the interfaces as well as cement penetration was measured. The reproducibility of the measurement could be shown for all interfaces in extension-flexion movements. For rotation a negative trend was shown for the interface cement-prosthesis and cement-bone concerning varus-valgus stress reflecting varying surgical cementation technique. More micromotion related to extension-flexion force might reflect the design of the implant. Measurement of relative micromotion and cement distribution appear accurate to detect small differences of movement at different interfaces of cemented tibial implants and the results are reproducible for most parameter. An increased number of specimens should achieve statistical relevance for all measurements.


Subject(s)
Arthroplasty, Replacement, Knee , Artificial Limbs , Reproducibility of Results , Bone Cements , Bone Nails
2.
Front Neurol ; 9: 799, 2018.
Article in English | MEDLINE | ID: mdl-30333785

ABSTRACT

Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r 2 = 0.45, p < 0.01, **) and contusion (r 2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.

3.
Rom J Morphol Embryol ; 58(3): 953-960, 2017.
Article in English | MEDLINE | ID: mdl-29250674

ABSTRACT

Oxidative stress is a culprit responsible for the development of acute and chronic kidney diseases. We aimed to establish a working model for the dynamic in vivo assessment of reactive oxygen species (ROS) production in rat kidney. A randomized controlled study was performed in 36 adult male Wistar rats subjected to unilateral urinary obstruction (UUO) via ureteral ligation and compared to SHAM controls. Dihydroethidium (DHE) was injected in the femoral vein and in vivo confocal microscopy was performed in the 2nd, 6th and 10th day, respectively after surgery. Maximal ROS levels elicited by UUO were recorded on the 6th day. However, the absolute difference of the means of DHE fluorescence intensity between UUO and SHAM was the highest on the 10th day. Our working model can monitor ROS production at different time frames and our initial findings suggest that the surgery-related ROS levels decline after an initial increase in the first days, whereas the ones elicited by chronic ligation continue to raise.


Subject(s)
Kidney/diagnostic imaging , Microscopy, Confocal/methods , Reactive Oxygen Species/metabolism , Animals , Kidney/pathology , Male , Oxidative Stress , Rats , Rats, Wistar
4.
J Neurotrauma ; 34(8): 1623-1635, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27799012

ABSTRACT

Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.


Subject(s)
Brain Edema/therapy , Brain Injuries, Traumatic/therapy , Decompressive Craniectomy/methods , Hypothermia, Induced/methods , Animals , Brain Contusion/diagnostic imaging , Brain Contusion/therapy , Brain Edema/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Combined Modality Therapy , Magnetic Resonance Imaging , Male , Mice
5.
J Neurotrauma ; 33(1): 122-31, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26102497

ABSTRACT

Decompressive craniectomy has been widely used in patients with head trauma. The randomized clinical trial on an early decompression (DECRA) demonstrated that craniectomy did not improve the neurological outcome, in contrast to previous animal experiments. The goal of our study was to analyze the effect of decompressive craniectomy in a murine model of head injury. Male mice were assigned into the following groups: sham, decompressive craniectomy, closed head injury (CHI), and CHI followed by craniectomy. At 24 h post-trauma, animals underwent the Neurological Severity Score test (NSS) and Beam Balance Score test (BBS). At the same time point, magnetic resonance imaging was performed, and volume of edema and contusion was assessed, followed by histopathological analysis. According to NSS, animals undergoing both trauma and craniectomy presented the most severe neurological impairment. Also, balancing time was reduced in this group compared with sham animals. Both edema and contusion volume were increased in the trauma and craniectomy group compared with sham animals. Histopathological analysis showed that all animals that underwent trauma presented substantial neuronal loss. In animals treated with craniectomy after trauma, a massive increase of edema with hemorrhagic transformation of contusion was documented. Decompressive craniectomy applied after closed head injury in mice leads to additional structural and functional impairment. The surgical decompression via craniectomy promotes brain edema formation and contusional blossoming in our model. This additive effect of combined mechanical and surgical trauma may explain the results of the DECRA trial and should be explored further in experiments.


Subject(s)
Brain Edema , Brain Injuries , Decompressive Craniectomy/adverse effects , Head Injuries, Closed , Animals , Behavior, Animal , Brain Edema/etiology , Brain Edema/pathology , Brain Edema/physiopathology , Brain Edema/surgery , Brain Injuries/etiology , Brain Injuries/pathology , Brain Injuries/physiopathology , Brain Injuries/surgery , Disease Models, Animal , Head Injuries, Closed/complications , Head Injuries, Closed/pathology , Head Injuries, Closed/physiopathology , Head Injuries, Closed/surgery , Magnetic Resonance Imaging , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...