Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 44(44): 19314-29, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26491831

ABSTRACT

Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Osmium Compounds/chemical synthesis , Osmium Compounds/pharmacology , Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Animals , Chloroquine/chemical synthesis , Ligands , Models, Molecular , Molecular Structure , Plasmodium falciparum/drug effects , Structure-Activity Relationship , X-Ray Diffraction
2.
Dalton Trans ; 41(21): 6443-50, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22421887

ABSTRACT

Organometallic analogues of chloroquine show promise as new antimalarial agents capable of overcoming resistance to the parent drug chloroquine. Here, the synthesis and characterization of three new cymantrene (CpMn(CO)(3)) and cyrhetrene (CpRe(CO)(3)) 4-aminoquinoline conjugates with either an amine or amide linker are reported. The antimalarial activity of the new organometallic conjugates N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cymantrenylbutanamide (3), N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cyrhetrenylbutanamide (4) and N-(7-chloroquinolin-4-yl)-N'-(cymantrenylmethyl)ethane-1,2-diamine (6) was evaluated against a chloroquine-sensitive (CQS) and a chloroquine-resistant strain (CQR) of the malaria parasite Plasmodium falciparum. The cymantrene complex with an amine linker (6) showed good activity against the CQS strain but was inactive against the CQR strain. In contrast, cymantrene and cyrhetrene compounds with an amide linker were active against both the CQS and the CQR strain. In addition, the antibacterial, anti-trypanosomal and anti-leishmanial activity of the compounds was evaluated. Compound 6 showed submicromolar activity against Trypanosoma brucei at a concentration where the toxicity to normal human cells is low. No significant effect was noticed on the exchange of manganese for rhenium in the CpM(CO)(3) moiety in any of the biological assays.


Subject(s)
Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Chemistry Techniques, Synthetic , Leishmania/drug effects , Organometallic Compounds/chemistry , Plasmodium falciparum/drug effects , Trypanosoma/drug effects , Aminoquinolines/chemical synthesis , Aminoquinolines/toxicity , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/toxicity , Bacteria/drug effects , Cell Line , Humans , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/toxicity
3.
Dalton Trans ; 41(9): 2764-73, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22249579

ABSTRACT

Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.


Subject(s)
Antimalarials/chemistry , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , 1-Octanol/chemistry , Animals , Antimalarials/pharmacology , CHO Cells , Cell Survival/drug effects , Chloroquine/pharmacology , Cricetinae , Cricetulus , Crystallography, X-Ray , Electric Conductivity , Heme/chemistry , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Ruthenium/pharmacology , Water/chemistry
4.
J Inorg Biochem ; 105(7): 985-90, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21565148

ABSTRACT

Organometallic analogs of chloroquine (CQ) are of interest as drug candidates that may be able to overcome the widespread chloroquine resistance developed by malaria parasites. Two new chromium arene CQ-analogs: [η(6)-N-(7-chloroquinolin-4-yl)-N'-(2-dimethylamino-methylbenzyl)-ethane-1,2-diamine]tricarbonylchromium 4 and [η(6)-N-(7-chloroquinolin-4-yl)-N'-(2-dimethylaminobenzyl)-ethane-1,2-diamine]tricarbonylchromium 9 have been synthesized and characterized. In addition, X-ray crystal structures of the intermediates (η(6)-benzyldimethylamine)tricarbonylchromium 2, [η(6)-2-((dimethylamino)methyl) benzaldehyde]tricarbonylchromium 3 and p-(η(6)-dimethylaminobenzaldehyde)tricarbonyl chromium 8 are reported. Compound 4 was more active than chloroquine against both CQ-sensitive and CQ-resistant strains of Plasmodium falciparum when antimalarial activity was tested in vitro. The activity of 4 against the CQ-resistant parasite strain was twice as high as for the organic ligand alone (IC(50) values of 33.9 nM versus 63.1 nM).


Subject(s)
Antimalarials/pharmacology , Chromium/chemistry , Coordination Complexes/pharmacology , Organometallic Compounds/pharmacology , Quinolines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Inhibitory Concentration 50 , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Plasmodium falciparum/drug effects , Quinolines/chemical synthesis , Quinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...