Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 316(1): 41-4, 2001 Dec 04.
Article in English | MEDLINE | ID: mdl-11720774

ABSTRACT

The proteolysis of alphaII-spectrin by calpain may be physiologically involved with synaptic remodeling, long-term potentiation, and memory formation. Calpain activation may also mediate neuronal apoptosis, responses to hypoxic insult, and excitotoxic injury. Surprisingly little is known of the activity of these calpain-mediated processes in the adult human brain. Using an antibody that specifically recognizes calpain-cleaved alphaII-spectrin, we have mapped the topographic distribution of the major alphaII-spectrin break-down product (alphaII-bdp1) in six adult brains examined post-mortem. All brains were from patients without evident neurological disease. Focally positive alphaII-bdp1 was consistently detected in the neuropil of the cortical gray matter, in occasional pyramidal neurons, and in rare reactive astrocytes in the cerebral cortex and hippocampus. Cerebellar Purkinje cells were more frequently, and more intensely, immunopositive. In all fields, staining was most intense in the soma and dendrites of neurons. There was no correlation of the frequency of positive cells with the postmortem interval or clinical condition. While these findings do not rigorously exclude contributions from postmortem calpain activation, they do suggest that a low-level of calpain processing of alphaII-spectrin is likely to be a constitutive process in the adult human brain.


Subject(s)
Brain/enzymology , Calpain/metabolism , Peptide Hydrolases/metabolism , Spectrin/metabolism , Adult , Aged , Calpain/analysis , Female , Humans , Hydrolysis , Male , Middle Aged , Spectrin/analysis
2.
Neurochem Int ; 37(4): 351-61, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10825575

ABSTRACT

Alpha II-spectrin (alpha-fodrin) is a demonstrated endogenous substrate for caspase-3 in neurons undergoing unscheduled apoptotic death. We have previously identified the caspase cleavage site that yields the distinctive 120 kDa spectrin breakdown product (SBDP120) as (DSLD(1478)*SVEAL). Here, by using a synthetic peptide (NH(2)-SVEALC) mimicking the neo-N-terminal of SBDP120 as antigen, we report the development of chicken antibodies that specifically recognize the SBDP120 generated by in vitro caspase-3 digestion of bovine alpha-spectrin on Western blot. These anti-SBDP120 antibodies recognize SBDP120 generated by two apoptotic challenges (staurosporine, EGTA) to human neuroblastoma SH-SY5Y cells. Yet they neither react with intact alpha-spectrin nor its other fragments on Western blots. These anti-SBDP120 work equally well in detecting SBDP120 generated in rat cerebellar granule neurons undergoing potassium withdrawal-induced apoptosis. In immunocytochemical studies, these antibodies also specifically stained apoptotic SH-SY5Y or CGN's undergoing apoptosis in a caspase- inhibitor-sensitive manner. These anti-SBDP120s might become powerful markers for apoptotic neurons in various neurological or neurodegenerative conditions in vivo.


Subject(s)
Antibodies/immunology , Apoptosis , Biomarkers/analysis , Carrier Proteins/immunology , Caspases/metabolism , Microfilament Proteins/immunology , Neurons/cytology , Animals , Antibody Specificity , Binding Sites , Carrier Proteins/analysis , Carrier Proteins/metabolism , Caspase 3 , Cattle , Cells, Cultured , Cerebellum/cytology , Chickens/immunology , Humans , Microfilament Proteins/analysis , Microfilament Proteins/metabolism , Molecular Weight , Neuroblastoma , Peptide Fragments/analysis , Peptide Fragments/immunology , Peptide Fragments/metabolism , Rats , Tumor Cells, Cultured
3.
J Biol Chem ; 273(35): 22490-7, 1998 Aug 28.
Article in English | MEDLINE | ID: mdl-9712874

ABSTRACT

The degradation of alphaII- and betaII-spectrin during apoptosis in cultured human neuroblastoma SH-SY5Y cells was investigated. Immunofluorescent staining showed that the collapse of the cortical spectrin cytoskeleton is an early event following staurosporine challenge. This collapse correlated with the generation of a series of prominent spectrin breakdown products (BDPs) derived from both alphaII- and betaII-subunits. Major C-terminal alphaII-spectrin BDPs were detected at approximately 150, 145, and 120 kDa (alphaII-BDP150, alphaII-BDP145, and alphaII-BDP120, respectively); major C-terminal betaII-spectrin BDPs were at approximately 110 and 85 kDa (betaII-BDP110 and betaII-BDP85, respectively). N-terminal sequencing of the major fragments produced in vitro by caspase 3 revealed that alphaII-BDP150 and alphaII-BDP120 were generated by cleavages at DETD1185*S1186 and DSLD1478*S1479, respectively. For betaII-spectrin, a major caspase site was detected at DEVD1457*S1458, and both betaII-BDP110 and betaII-BDP85 shared a common N-terminal sequence starting with Ser1458. An additional cleavage site near the C terminus, at ETVD2146*S2147, was found to account for betaII-BDP85. Studies using specific caspase or calpain inhibitors indicate that the pattern of spectrin breakdown during apoptosis differs from that during non-apoptotic cell death. We postulate that in concert with calpain, caspase rapidly targets critical sites in both alphaII- and betaII-spectrin and thereby initiates a rapid dissolution of the spectrin-actin cortical cytoskeleton with apoptosis.


Subject(s)
Apoptosis , Caspases , Cysteine Endopeptidases/metabolism , Spectrin/metabolism , Amino Acid Sequence , Caspase 3 , Humans , Hydrolysis , Kinetics , Spectrin/chemistry , Substrate Specificity , Tumor Cells, Cultured
4.
Biochemistry ; 36(1): 57-65, 1997 Jan 07.
Article in English | MEDLINE | ID: mdl-8993318

ABSTRACT

Intracellular proteolysis by the calpains, a family of Ca2+ activated cysteine proteases, is a ubiquitous yet poorly understood process. Their action is implicated in an array of cellular and pathologic processes, including long-term potentiation, synaptic remodeling, protein kinase C and steroid receptor activation, ischemic cellular injury, and apoptosis. Unlike most proteases, the calpains display unusually strict substrate specificity, often cleaving only one or two bonds in proteins with hundreds of potential sites. Studies of synthetic peptides have defined sequences that modulate their specificity, but little data exist in the context of a bona fide protein. A prominent substrate for mu-calpain is alpha II spectrin (fodrin, brain spectrin), which is cleaved between Tyr1176 and Gly1177 within spectrin's 11th structural repeat unit. We have cloned and characterized human fetal brain alpha II spectrin (GenBank no. U26396) and identified a new Thr1300 to Ile polymorphism. From this clone, recombinant GST-fusion proteins representing repeat units 8-14 have been prepared and used to systematically explore the in vitro determinants of mu-calpain sensitivity. Twenty different amino acids were substituted by site-directed mutagenesis for wild-type Val1175, the penultimate (P2) residue flanking the major calpain cleavage site in alpha II spectrin. Gly, Pro, and Asp, and to a lesser extent Phe and Glu, substantively inhibited the susceptibility of this site to mu-calpain; other substitutions yielded lesser effects. Dynamic molecular modeling of the 11th structural repeat of human alpha II spectrin incorporating the various mutations suggests that the calpain cleavage site with its flanking calmodulin binding domain interrupts helix C of alpha II spectrin's 11th repetitive unit without significantly disrupting the repeat's triple-helical motif. This model predicts that the critical Tyr1176-Gly1177 bond occurs in a highly exposed loop juxtaposed between helix C and the calmodulin binding domain and that mutations at the P2 position subtly alter the conformation about this site. We conclude that secondary and tertiary conformational features surrounding the cleavage site, rather than the linear sequence itself, dominate the determinants that define alpha II spectrin's mu-calpain susceptibility.


Subject(s)
Calpain/metabolism , Spectrin/genetics , Amino Acid Sequence , Binding Sites/genetics , Brain/metabolism , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Fetus/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Mutation/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis
5.
Hippocampus ; 6(3): 239-46, 1996.
Article in English | MEDLINE | ID: mdl-8841824

ABSTRACT

Physiological data suggest that in the CA1-CA3 hippocampal areas of rats, entorhinal cortical efferents directly influence the activity of interneurons, in addition to pyramidal cells. To verify this hypothesis, the following experiments were performed: 1) light microscopic double-immunostaining for parvalbumin and the anterograde tracer Phaseolus vulgaris-leucoagglutinin injected into the entorhinal cortex; 2) light and electron microscopic analysis of cleaved spectrin-immunostained (i.e., degenerating axons and boutons) hippocampal sections following entorhinal cortex lesion; and 3) an electron microscopic study of parvalbumin-immunostained hippocampal sections after entorhinal cortex lesion. The results demonstrate that in the stratum lacunosum-moleculare of the CA1 and CA3 regions, entorhinal cortical axons form asymmetric synaptic contacts on parvalbumin-containing dendritic shafts. In the stratum lacunosum-moleculare, parvalbumin-immunoreactive dendrites represent processes of GABAergic, inhibitory basket and chandelier cells; these interneurons innervate the perisomatic area and axon initial segments of pyramidal cells, respectively. A feed-forward activation of these neurons by the entorhinal input may explain the strong, short-latency inhibition of pyramidal cells.


Subject(s)
Entorhinal Cortex/physiology , Hippocampus/physiology , Neurons/metabolism , Parvalbumins/metabolism , Animals , Axons/ultrastructure , Entorhinal Cortex/cytology , Entorhinal Cortex/metabolism , Female , Hippocampus/cytology , Immunohistochemistry , Interneurons/metabolism , Interneurons/physiology , Interneurons/ultrastructure , Male , Microscopy, Electron , Nerve Fibers/physiology , Neurons/ultrastructure , Phytohemagglutinins , Pyramidal Cells/ultrastructure , Rats , Rats, Sprague-Dawley , Spectrin/metabolism , Synapses/physiology , Synapses/ultrastructure
6.
J Biol Chem ; 268(17): 12796-804, 1993 Jun 15.
Article in English | MEDLINE | ID: mdl-8509414

ABSTRACT

Cyclic AMP-dependent protein kinase II beta (PKAII beta) is the principal mediator of cAMP action in neurons. A Kinase Anchor Proteins (AKAPs) are enriched in forebrain neurons and have distinct high affinity binding domains for the regulatory subunit (RII beta) of PKAII beta and components of the dendritic cytoskeleton. The selective accumulation of AKAP.RII beta complexes near dendritic microtubules tethers PKAII beta in proximity with adenylate cyclase in the synaptic plasma membrane and cytoskeletal proteins that are substrates for the kinase, thereby creating intraneuronal target sites for signals carried by cAMP. We have characterized the targeting (anchoring) and tethering (RII beta binding) domains of a prototypic anchor protein AKAP75. Deletion of N-terminal residues 27-48 generated a truncated RII beta-binding protein that partitions equally between the cytosol and detergent-insoluble fractions of HEK293 cells. Further removal of a non-adjacent sequence (residues 77-91) produced a cytosolic protein with unimpaired RII beta binding activity. Thus, two noncontiguous domains mediate the intracellular localization of AKAP75. Boundaries for the RII beta tethering domain were mapped to residues 392-413 by scanning mutagenesis. Residues containing long aliphatic side chains are essential for the high affinity binding of RII beta by AKAP75. Contributions of hydrophobic amino acids to tethering activity also depend on the position of the residue in the sequence. Certain conservative mutations that should not alter significantly the overall hydrophobicity or helicity of the tethering region (e.g. replacement of Leu with Ala) diminish the RII beta binding activity of AKAP75.


Subject(s)
Adaptor Proteins, Signal Transducing , Brain/metabolism , Carrier Proteins , Cytoskeleton/metabolism , Protein Kinases/metabolism , Proteins/metabolism , A Kinase Anchor Proteins , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cloning, Molecular , DNA Mutational Analysis , Humans , Macromolecular Substances , Molecular Sequence Data , Mutagenesis , Mutagenesis, Insertional , Oligodeoxyribonucleotides , Oligonucleotides, Antisense , Polymerase Chain Reaction , Proteins/genetics , Restriction Mapping , Sequence Deletion , Sequence Homology, Amino Acid
7.
Mol Biol Cell ; 3(11): 1215-28, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1333841

ABSTRACT

In mammalian brain, physiological signals carried by cyclic AMP (cAMP) seem to be targeted to effector sites via the tethering of cAMP-dependent protein kinase II beta (PKAII beta) to intracellular structures. Recently characterized A kinase anchor proteins (AKAPs) are probable mediators of the sequestration of PKAII beta because they contain a high-affinity binding site for the regulatory subunit (RII beta) of the kinase and a distinct intracellular targeting domain. To establish a cellular basis for this targeting mechanism, we have employed immunocytochemistry to 1) identify the types of neurons that are enriched in AKAPs, 2) determine the primary intracellular location of the anchor protein, and 3) demonstrate that an AKAP and RII beta are coenriched and colocalized in neurons that utilize the adenylate cyclase-cyclic AMP-dependent protein kinase (PKA) signaling pathway. Antibodies directed against rat brain AKAP 150 were used to elucidate the regional, cellular and intracellular distribution of a prototypic anchor protein in the CNS. AKAP 150 is abundant in Purkinje cells and in neurons of the olfactory bulb, basal ganglia, cerebral cortex, and other forebrain regions. In contrast, little AKAP 150 is detected in neurons of the thalamus, hypothalamus, midbrain, and hindbrain. A high proportion of total AKAP 150 is concentrated in primary branches of dendrites, where it is associated with microtubules. We also discovered that the patterns of accumulation and localization of RII beta (and PKAII beta) in brain are similar to those of AKAP 150. The results suggest that bifunctional AKAP 150 tethers PKAII beta to the dendritic cytoskeleton, thereby creating a discrete target site for the reception and propagation of signals carried by cAMP.


Subject(s)
Brain/metabolism , Carrier Proteins/metabolism , Cyclic AMP/metabolism , Intracellular Signaling Peptides and Proteins , Neurons/metabolism , Protein Kinases/metabolism , Proteins/metabolism , Animals , Binding Sites , Blotting, Western , Brain Chemistry , Cytoskeleton/chemistry , Cytoskeleton/metabolism , Dendrites/chemistry , Dendrites/metabolism , Immunoenzyme Techniques , Neurons/chemistry , Pituitary Gland/metabolism , Proteins/analysis , Rats , Signal Transduction
8.
J Biol Chem ; 267(4): 2131-4, 1992 Feb 05.
Article in English | MEDLINE | ID: mdl-1733921

ABSTRACT

The A-Kinase Anchor Protein AKAP 75 (formerly designated bovine brain P75) is a particulate brain protein that avidly binds the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta (Bregman, D. B., Hirsch, A.H. and Rubin, C.S. (1991) J. Biol. Chem. 266, 7207-7213). The formation of stable AKAP 75.RII beta complexes provides a potential mechanism for targeting physiological signals carried by cAMP to specific effector sites within neurons and other brain cells. We have now cloned and characterized the AKAP 75 gene. Its coding sequence is novel and unexpectedly short (1284 base pairs) and contains no introns. When the AKAP 75 gene was transfected into HEK 293 cells, a new RII beta-binding protein with an apparent Mr of 75,000 accumulated. A high proportion (approximately 65%) of the AKAP 75 gene product was excluded from the cytoplasm and was recovered in the 40,000 x g pellet derived from disrupted transfected cells. In contrast, cells transfected with a construct encoding 249 amino acids from the central and C-terminal regions of AKAP 75 produced an RII beta-binding protein (apparent Mr = 45,000) that was exclusively cytosolic. AKAP 75 is a novel protein composed of only 428 amino acid residues (Mr = 47,878). A highly acidic C-terminal region mediates the binding of RII beta (and cAMP-dependent protein kinase II beta), whereas a positively charged N-terminal segment contains structural features that are essential for the association of AKAP 75 with the cytoskeleton and/or intracellular membranes.


Subject(s)
Adaptor Proteins, Signal Transducing , Carrier Proteins , Introns , Nerve Tissue Proteins , Protein Kinases/chemistry , Proteins/genetics , A Kinase Anchor Proteins , Amino Acid Sequence , Animals , Autoradiography , Base Sequence , Blotting, Western , Cattle , Cell Line , Cloning, Molecular , DNA/genetics , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Sequence Data , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...