Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Soc Cogn Affect Neurosci ; 18(1)2023 05 13.
Article in English | MEDLINE | ID: mdl-37130095

ABSTRACT

Negative self-beliefs are a core feature of psychopathology, encompassing both negative appraisals about oneself directly (i.e. self-judgment) and negative inferences of how the self is appraised by others (i.e. social judgment). Challenging maladaptive self-beliefs via cognitive restructuring is a core treatment mechanism of gold-standard psychotherapies. However, the neural mechanisms underlying the restructuring of these two kinds of negative self-beliefs are poorly understood. Eighty-six healthy participants cognitively restructured self-judgment and social-judgment negative self-belief statements during 7 Tesla functional magnetic resonance imaging scanning. Cognitive restructuring broadly elicited activation in the core default mode network (DMN), salience and frontoparietal control regions. Restructuring self-judgment relative to social-judgment beliefs was associated with comparatively higher activation in the ventral posterior cingulate cortex (PCC)/retrosplenial cortex, while challenging social-judgment statements was associated with higher activation in the dorsal PCC/precuneus. While both regions showed increased functional connectivity with the supplementary and pre-supplementary motor areas during restructuring, the dorsal PCC displayed greater task-dependent connectivity with distributed regions involved in salience, attention and social cognition. Our findings indicate distinct patterns of PCC engagement contingent upon self- and social domains, highlighting a specialized role of the dorsal PCC in supporting neural interactions between the DMN and frontoparietal/salience networks during cognitive restructuring.


Subject(s)
Brain Mapping , Gyrus Cinguli , Humans , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Brain Mapping/methods , Cognitive Restructuring , Judgment/physiology , Attention/physiology , Magnetic Resonance Imaging/methods , Brain/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
2.
Neuroimage ; 270: 119964, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36822252

ABSTRACT

Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood. Using ultra-high field 7-Tesla functional magnetic resonance imaging, this study investigated the bottom-up interactions of the amygdala and PAG with the SN during negative emotional salience processing. Thirty-seven healthy participants completed an emotional oddball paradigm designed to elicit a salient negative emotional response via the presentation of random, task-irrelevant negative emotional images. Negative emotional processing was associated with prominent activation in the SN, spanning the amygdala, PAG, aINS, and dACC. Consistent with previous research, analysis using dynamic causal modelling revealed an excitatory influence from the amygdala to the aINS, dACC, and PAG. In contrast, the PAG showed an inhibitory influence on amygdala, aINS and dACC activity. Our findings suggest that the amygdala may amplify the processing of negative emotional stimuli in the SN to enable upstream access to attentional resources. In comparison, the inhibitory influence of the PAG possibly reflects its involvement in modulating sympathetic-parasympathetic autonomic arousal mediated by the SN. This PAG-mediated effect may be driven by amygdala input and facilitate bottom-up processing of negative emotional stimuli. Overall, our results show that the amygdala and PAG modulate divergent functions of the SN during negative emotional processing.


Subject(s)
Brain , Emotions , Humans , Emotions/physiology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Brain Mapping , Magnetic Resonance Imaging/methods
3.
J Neurosci ; 42(25): 5047-5057, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35577553

ABSTRACT

Safety learning generates associative links between neutral stimuli and the absence of threat, promoting the inhibition of fear and security-seeking behaviors. Precisely how safety learning is mediated at the level of underlying brain systems, particularly in humans, remains unclear. Here, we integrated a novel Pavlovian conditioned inhibition task with ultra-high field (7 Tesla) fMRI to examine the neural basis of safety learning in 49 healthy participants. In our task, participants were conditioned to two safety signals: a conditioned inhibitor that predicted threat omission when paired with a known threat signal (A+/AX-), and a standard safety signal that generally predicted threat omission (BC-). Both safety signals evoked equivalent autonomic and subjective learning responses but diverged strongly in terms of underlying brain activation (PFDR whole-brain corrected). The conditioned inhibitor was characterized by more prominent activation of the dorsal striatum, anterior insular, and dorsolateral PFC compared with the standard safety signal, whereas the latter evoked greater activation of the ventromedial PFC, posterior cingulate, and hippocampus, among other regions. Further analyses of the conditioned inhibitor indicated that its initial learning was characterized by consistent engagement of dorsal striatal, midbrain, thalamic, premotor, and prefrontal subregions. These findings suggest that safety learning via conditioned inhibition involves a distributed cortico-striatal circuitry, separable from broader cortical regions involved with processing standard safety signals (e.g., CS-). This cortico-striatal system could represent a novel neural substrate of safety learning, underlying the initial generation of "stimulus-safety" associations, distinct from wider cortical correlates of safety processing, which facilitate the behavioral outcomes of learning.SIGNIFICANCE STATEMENT Identifying safety is critical for maintaining adaptive levels of anxiety, but the neural mechanisms of human safety learning remain unclear. Using 7 Tesla fMRI, we compared learning-related brain activity for a conditioned inhibitor, which actively predicted threat omission, and a standard safety signal (CS-), which was passively unpaired with threat. The inhibitor engaged an extended circuitry primarily featuring the dorsal striatum, along with thalamic, midbrain, and premotor/PFC regions. The CS- exclusively involved cortical safety-related regions observed in basic safety conditioning, such as the vmPFC. These findings extend current models to include learning-specific mechanisms for encoding stimulus-safety associations, which might be distinguished from expression-related cortical mechanisms. These insights may suggest novel avenues for targeting dysfunctional safety learning in psychopathology.


Subject(s)
Brain Mapping , Conditioning, Classical , Brain/physiology , Conditioning, Classical/physiology , Fear/physiology , Humans , Magnetic Resonance Imaging
4.
Mol Psychiatry ; 27(3): 1611-1617, 2022 03.
Article in English | MEDLINE | ID: mdl-34974523

ABSTRACT

Negative self-beliefs are a core feature of psychopathology. Despite this, we have a limited understanding of the brain mechanisms by which negative self-beliefs are cognitively restructured. Using a novel paradigm, we had participants use Socratic questioning techniques to restructure negative beliefs during ultra-high resolution 7-Tesla functional magnetic resonance imaging (UHF 7 T fMRI) scanning. Cognitive restructuring elicited prominent activation in a fronto-striato-thalamic circuit, including the mediodorsal thalamus (MD), a group of deep subcortical nuclei believed to synchronize and integrate prefrontal cortex activity, but which has seldom been directly examined with fMRI due to its small size. Increased activity was also identified in the medial prefrontal cortex (MPFC), a region consistently activated by internally focused mental processing, as well as in lateral prefrontal regions associated with regulating emotional reactivity. Using Dynamic Causal Modelling (DCM), evidence was found to support the MD as having a strong excitatory effect on the activity of regions within the broader network mediating cognitive restructuring. Moreover, the degree to which participants modulated MPFC-to-MD effective connectivity during cognitive restructuring predicted their individual tendency to engage in repetitive negative thinking. Our findings represent a major shift from a cortico-centric framework of cognition and provide important mechanistic insights into how the MD facilitates key processes in cognitive interventions for common psychiatric disorders. In addition to relaying integrative information across basal ganglia and the cortex, we propose a multifaceted role for the MD whose broad excitatory pathways act to increase synchrony between cortical regions to sustain complex mental representations, including the self.


Subject(s)
Prefrontal Cortex , Thalamus , Basal Ganglia , Cognition/physiology , Humans , Magnetic Resonance Imaging/methods , Neural Pathways
5.
Cereb Cortex ; 32(19): 4345-4355, 2022 09 19.
Article in English | MEDLINE | ID: mdl-34974620

ABSTRACT

The brain's "default mode network" (DMN) enables flexible switching between internally and externally focused cognition. Precisely how this modulation occurs is not well understood, although it may involve key subcortical mechanisms, including hypothesized influences from the basal forebrain (BF) and mediodorsal thalamus (MD). Here, we used ultra-high field (7 T) functional magnetic resonance imaging to examine the involvement of the BF and MD across states of task-induced DMN activity modulation. Specifically, we mapped DMN activity suppression ("deactivation") when participants transitioned between rest and externally focused task performance, as well as DMN activity engagement ("activation") when task performance was internally (i.e., self) focused. Consistent with recent rodent studies, the BF showed overall activity suppression with DMN cortical regions when comparing the rest to external task conditions. Further analyses, including dynamic causal modeling, confirmed that the BF drove changes in DMN cortical activity during these rest-to-task transitions. The MD, by comparison, was specifically engaged during internally focused cognition and demonstrated a broad excitatory influence on DMN cortical activation. These results provide the first direct evidence in humans of distinct BF and thalamic circuit influences on the control of DMN function and suggest novel mechanistic avenues for ongoing translational research.


Subject(s)
Brain Mapping , Nerve Net , Brain Mapping/methods , Cognition/physiology , Humans , Magnetic Resonance Imaging , Nerve Net/physiology , Rest
6.
Neuroimage ; 245: 118643, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34699966

ABSTRACT

Threat learning elicits robust changes across multiple affective domains, including changes in autonomic indices and subjective reports of fear and anxiety. It has been argued that the underlying causes of such changes may be dissociable at a neural level, but there is currently limited evidence to support this notion. To address this, we examined the neural mediators of trial-by-trial skin conductance responses (SCR), and subjective reports of anxious arousal and valence in participants (n = 27; 17 females) performing a threat reversal task during ultra-high field functional magnetic resonance imaging. This allowed us to identify brain mediators during initial threat learning and subsequent threat reversal. Significant neural mediators of anxious arousal during threat learning included the dorsal anterior cingulate, anterior insula cortex (AIC), and ventromedial prefrontal cortex (vmPFC), subcortical regions including the amygdala, ventral striatum, caudate and putamen, and brain-stem regions including the pons and midbrain. By comparison, autonomic changes (SCR) were mediated by a subset of regions embedded within this broader circuitry that included the caudate, putamen and thalamus, and two distinct clusters within the vmPFC. The neural mediators of subjective negative valence showed prominent effects in posterior cortical regions and, with the exception of the AIC, did not overlap with threat learning task effects. During threat reversal, positive mediators of both subjective anxious arousal and valence mapped to the default mode network; this included the vmPFC, posterior cingulate, temporoparietal junction, and angular gyrus. Decreased SCR during threat reversal was positively mediated by regions including the mid cingulate, AIC, two sub-regions of vmPFC, the thalamus, and the hippocampus. Our findings add novel evidence to support distinct underlying neural processes facilitating autonomic and subjective responding during threat learning and threat reversal. The results suggest that the brain systems engaged in threat learning mostly capture the subjective (anxious arousal) nature of the learning process, and that appropriate responding during threat reversal is facilitated by participants engaging self- and valence-based processes. Autonomic changes (SCR) appear to involve distinct facilitatory and regulatory contributions of vmPFC sub-regions.


Subject(s)
Autonomic Nervous System/physiology , Brain Mapping/methods , Fear/physiology , Learning/physiology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Anxiety/physiopathology , Arousal/physiology , Female , Galvanic Skin Response , Humans , Male
7.
Magn Reson Imaging Clin N Am ; 29(1): 103-116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33237011

ABSTRACT

Ultrahigh-field (7T) MRI provides improved contrast and a signal-to-noise gain compared with lower magnetic field strengths. Here, we demonstrate feasibility and optimization of anatomic imaging of the eye and orbit using a dedicated commercial multichannel transmit and receive eye coil. Optimization of participant setup techniques and MRI sequence parameters allowed for improvements in the image resolution and contrast, and the eye and orbit coverage with minimal susceptibility and motion artifacts in a clinically feasible protocol.


Subject(s)
Magnetic Resonance Imaging/methods , Orbit/anatomy & histology , Adult , Female , Humans , Male , Reference Values , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...