Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 248: 115971, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154328

ABSTRACT

Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 µM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 µM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 µV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.


Subject(s)
Biosensing Techniques , Parkinson Disease , Humans , Apomorphine , Parkinson Disease/drug therapy , Ion-Selective Electrodes , Pharmaceutical Preparations , Potentiometry
2.
Anal Chim Acta ; 1273: 341546, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37423672

ABSTRACT

Parkinson's disease (PD) is one of the leading neurological disorders negatively impacting health on a global scale. Patients diagnosed with PD require frequent monitoring, prescribed medications, and therapy for extended periods as symptom severity worsens. The primary pharmaceutical treatment for PD patients is levodopa (L-Dopa) which reduces many symptoms experienced by PD patients (e.g., tremors, cognitive ability, motor dysfunction, etc.) through the regulation of dopamine levels in the body. Herein, the first detection of L-Dopa in human sweat using a low-cost 3D printed sensor with a simple and rapid fabrication protocol combined with a portable potentiostat wirelessly connected to a smartphone via Bluetooth is reported. By combining saponification and electrochemical activation into a single protocol, the optimized 3D printed carbon electrodes were able to simultaneously detect uric acid and L-Dopa throughout their biologically relevant ranges. The optimized sensors provided a sensitivity of 83 ± 3 nA/µM from 24 µM to 300 nM L-Dopa. Common physiological interferents found in sweat (e.g., ascorbic acid, glucose, caffeine) showed no influence on the response for L-Dopa. Lastly, a percent recovery of L-Dopa in human sweat using a smartphone-assisted handheld potentiostat resulted in the recovery of 100 ± 8%, confirming the ability of this sensor to accurately detect L-Dopa in sweat.


Subject(s)
Levodopa , Parkinson Disease , Humans , Sweat , Smartphone , Parkinson Disease/drug therapy , Printing, Three-Dimensional
3.
Anal Chem ; 93(48): 15826-15831, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34812620

ABSTRACT

This technical note describes a method for fabricating ion-selective membranes (ISMs) for use in potentiometric sensing by using 3D printing technology. Here, we demonstrate the versatility of this approach by fabricating ISMs and investigating their performance in both liquid-contact and solid-contact ion-selective electrode (ISE) configurations. Using 3D printed ISMs resulted in highly stable (drift of ∼17 µV/h) and highly reproducible (<1 mV deviation) measurements. Furthermore, we show the seamless translation of these membranes into reliable, carbon fiber- and paper-based potentiometric sensors for applications at the point-of-care. To highlight the modifiability of this approach, we fabricated sensors for bilirubin, an important biomarker of liver health; benzalkonium, a common preservative used in the pharmaceutical industry; and potassium, an important blood electrolyte. The ability to mass produce sensors using 3D printing is an attractive advantage over conventional methods, while also decreasing the time and cost associated with sensor fabrication.


Subject(s)
Ion-Selective Electrodes , Point-of-Care Systems , Ions , Potentiometry , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...