Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1703(2): 157-69, 2005 Jan 17.
Article in English | MEDLINE | ID: mdl-15680224

ABSTRACT

The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. Because it lacks Trp and Cys residues, mild oxidation of alpha-synuclein in vitro with hydrogen peroxide selectively converts all four methionine residues to the corresponding sulfoxides. Both oxidized and non-oxidized alpha-synucleins have similar unfolded conformations; however, the fibrillation of alpha-synuclein at physiological pH is completely inhibited by methionine oxidation. The inhibition results from stabilization of soluble oligomers of Met-oxidized alpha-synuclein. Furthermore, the Met-oxidized protein also inhibits fibrillation of unmodified alpha-synuclein. The degree of inhibition of fibrillation by Met-oxidized alpha-synuclein is proportional to the number of oxidized methionines. However, the presence of metals can completely overcome the inhibition of fibrillation of the Met-oxidized alpha-synuclein. Since oligomers of aggregated alpha-synuclein may be cytotoxic, these findings indicate that both oxidative stress and environmental metal pollution could play an important role in the aggregation of alpha-synuclein, and hence possibly Parkinson's disease. In addition, if the level of Met-oxidized alpha-synuclein was under the control of methionine sulfoxide reductase (Msr), then this could also be factor in the disease.


Subject(s)
Methionine/metabolism , Nerve Tissue Proteins/metabolism , Parkinson Disease/metabolism , Humans , Synucleins , alpha-Synuclein
2.
J Biol Chem ; 278(30): 27630-5, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12754258

ABSTRACT

The aggregation and fibrillation of alpha-synuclein has been implicated as a key step in the etiology of Parkinson's disease and several other neurodegenerative disorders. In addition, oxidative stress and certain environmental factors, including metals, are believed to play an important role in Parkinson's disease. Previously, we have shown that methionine-oxidized human alpha-synuclein does not fibrillate and also inhibits fibrillation of unmodified alpha-synuclein (Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., and Fink, A. L. (2002) FEBS Lett. 517, 239-244). Using dynamic light scattering, we show that the inhibition results from stabilization of the monomeric form of Met-oxidized alpha-synuclein. We have now examined the effect of several metals on the structural properties of methionine-oxidized human alpha-synuclein and its propensity to fibrillate. The presence of metals induced partial folding of both oxidized and non-oxidized alpha-synucleins, which are intrinsically unstructured under conditions of neutral pH. Although the fibrillation of alpha-synuclein was completely inhibited by methionine oxidation, the presence of certain metals (Ti3+, Zn2+, Al3+, and Pb2+) overcame this inhibition. These findings indicate that a combination of oxidative stress and environmental metal pollution could play an important role in triggering the fibrillation of alpha-synuclein and thus possibly Parkinson's disease.


Subject(s)
Metals/pharmacology , Nerve Tissue Proteins/metabolism , Oxygen/metabolism , Circular Dichroism , Escherichia coli/metabolism , Humans , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Kinetics , Light , Microscopy, Electron , Nerve Tissue Proteins/chemistry , Oxidative Stress , Protein Conformation , Scattering, Radiation , Synucleins , Temperature , Time Factors , alpha-Synuclein
3.
FEBS Lett ; 517(1-3): 239-44, 2002 Apr 24.
Article in English | MEDLINE | ID: mdl-12062445

ABSTRACT

We examined the effect of methionine oxidation of human recombinant alpha-synuclein on its structural properties and propensity to fibrillate. Both oxidized and non-oxidized alpha-synucleins were natively unfolded under conditions of neutral pH, with the oxidized protein being slightly more disordered. Both proteins adopted identical partially folded conformations under conditions of acidic pH. The fibrillation of alpha-synuclein at neutral pH was completely inhibited by methionine oxidation. This inhibitory effect was eliminated at low pH. The addition of oxidized alpha-synuclein to the unoxidized form led to a substantial inhibition of alpha-synuclein fibrillation.


Subject(s)
Methionine/metabolism , Nerve Tissue Proteins/metabolism , Escherichia coli , Humans , Hydrogen-Ion Concentration , Nerve Tissue Proteins/chemistry , Oxidation-Reduction , Protein Binding , Protein Folding , Protein Structure, Secondary , Synucleins , alpha-Synuclein
4.
J Biol Chem ; 277(1): 295-302, 2002 Jan 04.
Article in English | MEDLINE | ID: mdl-11689556

ABSTRACT

A series of potent and selective inducible nitric-oxide synthase (iNOS) inhibitors was shown to prevent iNOS dimerization in cells and inhibit iNOS in vivo. These inhibitors are now shown to block dimerization of purified human iNOS monomers. A 3H-labeled inhibitor bound to full-length human iNOS monomer with apparent Kd approximately 1.8 nm and had a slow off rate, 1.2 x 10(-4) x s(-1). Inhibitors also bound with high affinity to both murine full-length and murine oxygenase domain iNOS monomers. Spectroscopy and competition binding with imidazole confirmed an inhibitor-heme interaction. Inhibitor affinity in the binding assay (apparent Kd values from 330 pm to 27 nm) correlated with potency in a cell-based iNOS assay (IC50 values from 290 pm to 270 nm). Inhibitor potency in cells was not prevented by medium supplementation with l-arginine or sepiapterin, but inhibition decreased with time of addition after cytokine stimulation. The results are consistent with a mechanism whereby inhibitors bind to a heme-containing iNOS monomer species to form an inactive iNOS monomer-heme-inhibitor complex in a pterin- and l-arginine-independent manner. The selectivity for inhibiting dimerization of iNOS versus endothelial and neuronal NOS suggests that the energetics and kinetics of monomer-dimer equilibria are substantially different for the mammalian NOS isoforms. These inhibitors provide new research tools to explore these processes.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/chemistry , Dimerization , Imidazoles/pharmacology , Nitric Oxide Synthase Type II , Pyrimidines/pharmacology , Radioligand Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...