Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Psychol ; 70(1): 1-13, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37039504

ABSTRACT

The dual-route model explains the SNARC (Spatial-Numerical Association of Response Codes) effect assuming two routes of parallel information processing: the unconditional route (automatic activation of pre-existing links) and the conditional route (activation of task-specific links). To test predictions derived from this model, we evaluated whether response latency in superficial number processing modulates the SNARC effect in a color task (participants judged the color of a number). In Experiment 1, participants performed a parity task, an easy color task (short RTs), and a difficult color task (RTs similar to those of the parity task). A SNARC effect emerged only in the parity task. In Experiment 2, participants performed a color task and a secondary task under four conditions chosen to orthogonally manipulate response latency (short vs. long) and processing depth (semantic vs. perceptual). Only the long-latency perceptual-processing condition elicited a SNARC effect. To explain these results, we suggest that the cognitive resources required by a secondary task might dilute the SNARC effect. Our results indicate that the dual-route model should be modified to take into account additional factors (e.g., working memory load) that influence the level of activation of the unconditional route.


Subject(s)
Judgment , Processing Speed , Humans , Judgment/physiology , Space Perception/physiology , Cognition/physiology , Reaction Time/physiology
2.
Q J Exp Psychol (Hove) ; 73(7): 1115-1132, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31941406

ABSTRACT

Recent research suggests that addition and subtraction induce horizontal shifts of attention. Previous studies used single-digit (1d) problems or verification paradigms that lend themselves to alternative solution strategies beyond mental arithmetic. To measure spatial attention during the active production of solutions to complex two-digit arithmetic problems (2d) without manual motor involvement, we used a temporal order judgement (TOJ) paradigm in which two lateralised targets were sequentially presented on screen with a varying stimulus onset asynchrony (SOA). Participants verbally indicated which target appeared first. By varying the delay between the arithmetic problem presentation and the TOJ task, we investigated how arithmetically induced attention shifts develop over time (Experiment 1, n = 31 and Experiment 2, n = 58). In Experiment 2, we additionally varied the carry property of the arithmetic task to examine how task difficulty modulates the effects. In the arithmetic task, participants were first presented with the arithmetic problem via headphones and performed the TOJ task after the delay before responding to the arithmetic task. To account for spontaneous attentional biases, a baseline TOJ was run without arithmetic processing. Both experiments revealed that addition induces shifts of spatial attention to the right suggesting that visuospatial attention mechanisms are recruited during complex arithmetic. We observed no difference in spatial attention between the carry and noncarry condition (Experiment 2). No shifts were observed for subtraction problems. No common and conclusive influence of delay was observed across experiments. Qualitative differences between addition and subtraction and the role of task difficulty are discussed.


Subject(s)
Attention/physiology , Judgment/physiology , Mathematical Concepts , Space Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...