Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Rep ; 27(13): 3770-3779.e7, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242411

ABSTRACT

FACT (facilitates chromatin transcription) is an evolutionarily conserved histone chaperone that was initially identified as an activity capable of promoting RNA polymerase II (Pol II) transcription through nucleosomes in vitro. In this report, we describe a global analysis of FACT function in Pol II transcription in Drosophila. We present evidence that loss of FACT has a dramatic impact on Pol II elongation-coupled processes including histone H3 lysine 4 (H3K4) and H3K36 methylation, consistent with a role for FACT in coordinating histone modification and chromatin architecture during Pol II transcription. Importantly, we identify a role for FACT in the maintenance of promoter-proximal Pol II pausing, a key step in transcription activation in higher eukaryotes. These findings bring to light a broader role for FACT in the regulation of Pol II transcription.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Histones/metabolism , Protein Processing, Post-Translational , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Animals , Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Histones/genetics , RNA Polymerase II/genetics
2.
G3 (Bethesda) ; 7(8): 2627-2635, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28606944

ABSTRACT

Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance.


Subject(s)
Culex/microbiology , Epistasis, Genetic , Gonads/microbiology , Symbiosis/genetics , Wolbachia/growth & development , Wolbachia/genetics , Animals , Chromosome Mapping , Female , Inheritance Patterns/genetics , Male , Quantitative Trait Loci/genetics
3.
J Med Entomol ; 51(1): 189-99, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24605469

ABSTRACT

The endosymbiotic bacteria Wolbachia pipientis Hertig infects a wide variety of insect species and can increase viral resistance in its host. Wolbachia naturally infects Culex quinquefasciatus Say and Culex pipiens L. mosquitoes, both vectors of West Nile virus (WNV). We recently demonstrated that Wolbachia infection of Cx. quinquefasciatus laboratory strain Ben95 increases host resistance to WNV infection, reducing vector competence. This observation raised the possibility that Wolbachia could impact vector competence in other populations of Cx. quinquefasciatus or Cx. pipiens. To investigate this possibility, Wolbachia densities were measured in Ben95 Cx. quinquefasciatus and compared with densities in a newly established colony of Cx. quinquefasciatus, and in field-collected and colonized Cx. pipiens. Wolbachia densities in somatic tissues of Ben95 Cx. quinquefasciatus were significantly higher than densities in the other mosquito populations tested. There was also no significant spatiotemporal variation in Wolbachia density in the field-collected Cx. pipiens, although significant familial differences were observed. Correlating Wolbachia densities and vector competence in individual colonized Cx. pipiens indicated that the densities of somatic Wolbachia observed in the mosquitoes other than Ben95 Cx. quinquefasciatus were too low to inhibit WNV infection and reduce vector competence. These results suggest that the high Wolbachia densities capable of inducing resistance to WNV in Ben95 Cx. quinquefasciatus are not a general characteristic of Cx. quinquefasciatus or Cx. pipiens mosquitoes and that the impact of Wolbachia on vector competence in field populations of Cx. quinquefasciatus and Cx. pipiens, if any, is likely to be limited to specific populations.


Subject(s)
Culex/microbiology , Insect Vectors/microbiology , West Nile virus , Wolbachia/physiology , Animals , Culex/immunology , Female , Insect Vectors/immunology
4.
PLoS One ; 5(8): e11977, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20700535

ABSTRACT

BACKGROUND: The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated Wolbachia-induced resistance to West Nile virus (WNV; Flaviviridae) by measuring infection susceptibility in Wolbachia-infected and Wolbachia-free D. melanogaster and Culex quinquefasciatus, a natural mosquito vector of WNV. Wolbachia infection of D. melanogaster induces strong resistance to WNV infection. Wolbachia-infected flies had a 500-fold higher ID50 for WNV and produced 100,000-fold lower virus titers compared to flies lacking Wolbachia. The resistance phenotype was transmitted as a maternal, cytoplasmic factor and was fully reverted in flies cured of Wolbachia. Wolbachia infection had much less effect on the susceptibility of D. melanogaster to Chikungunya (Togaviridae) and La Crosse (Bunyaviridae) viruses. Wolbachia also induces resistance to WNV infection in Cx. quinquefasciatus. While Wolbachia had no effect on the overall rate of peroral infection by WNV, Wolbachia-infected mosquitoes produced lower virus titers and had 2 to 3-fold lower rates of virus transmission compared to mosquitoes lacking Wolbachia. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that Wolbachia can increase resistance to arbovirus infection resulting in decreased virus transmission in a native Wolbachia-mosquito system. The results suggest that Wolbachia reduces vector competence in Cx. quinquefasciatus, and potentially in other Wolbachia-infected mosquito vectors.


Subject(s)
Culex/microbiology , Drosophila melanogaster/microbiology , Immunity, Innate , Symbiosis , West Nile Fever/immunology , Wolbachia/physiology , Animal Feed/virology , Animals , Chikungunya virus/physiology , Culex/physiology , Drosophila melanogaster/physiology , Female , Insect Vectors/microbiology , Insect Vectors/physiology , La Crosse virus/physiology , Male , Phenotype , West Nile Fever/microbiology , West Nile Fever/transmission
5.
Fly (Austin) ; 2(4): 198-214, 2008.
Article in English | MEDLINE | ID: mdl-18719403

ABSTRACT

Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization,RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627 and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2)and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.


Subject(s)
Acyltransferases/metabolism , Drosophila Proteins/metabolism , Drosophila/enzymology , Membrane Proteins/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Thiolester Hydrolases/metabolism , Acyltransferases/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Genes, Insect , Humans , Male , Membrane Proteins/genetics , Molecular Sequence Data , Multigene Family , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/genetics
6.
Virology ; 377(1): 197-206, 2008 Jul 20.
Article in English | MEDLINE | ID: mdl-18501400

ABSTRACT

To determine if West Nile virus (WNV) infection of insect cells induces a protective RNAi response, Drosophila melanogaster S2 and Aedes albopictus C6/36 cells were infected with WNV, and the production of WNV-homologous small RNAs was assayed as an indicator of RNAi induction. A distinct population of approximately 25 nt WNV-homologous small RNAs was detected in infected S2 cells but not C6/36 cells. RNAi knockdown of Argonaute 2 in S2 cells resulted in slightly increased susceptibility to WNV infection, suggesting that some WNV-homologous small RNAs produced in infected S2 cells are functional small interfering RNAs. WNV was shown to infect adult D. melanogaster, and adult flies containing mutations in each of four different RNAi genes (Argonaute 2, spindle-E, piwi, and Dicer-2) were significantly more susceptible to WNV infection than wildtype flies. These results combined with the analysis of WNV infection of S2 and C6/36 cells support the conclusion that WNV infection of D. melanogaster, but perhaps not Ae. albopictus, induces a protective RNAi response.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/virology , RNA Interference , West Nile virus/pathogenicity , Adenosine Triphosphatases/genetics , Aedes/genetics , Aedes/virology , Animals , Argonaute Proteins , Base Sequence , Cell Line , Chlorocebus aethiops , Culex/genetics , Culex/virology , DNA Primers/genetics , Drosophila Proteins/genetics , Female , Genes, Insect , Mutation , Proteins/genetics , RNA Helicases/genetics , RNA-Induced Silencing Complex/genetics , Ribonuclease III , Species Specificity , Vero Cells
7.
Nature ; 453(7193): 358-62, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18408708

ABSTRACT

Comparative genomics of nucleosome positions provides a powerful means for understanding how the organization of chromatin and the transcription machinery co-evolve. Here we produce a high-resolution reference map of H2A.Z and bulk nucleosome locations across the genome of the fly Drosophila melanogaster and compare it to that from the yeast Saccharomyces cerevisiae. Like Saccharomyces, Drosophila nucleosomes are organized around active transcription start sites in a canonical -1, nucleosome-free region, +1 arrangement. However, Drosophila does not incorporate H2A.Z into the -1 nucleosome and does not bury its transcriptional start site in the +1 nucleosome. At thousands of genes, RNA polymerase II engages the +1 nucleosome and pauses. How the transcription initiation machinery contends with the +1 nucleosome seems to be fundamentally different across major eukaryotic lines.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , Animals , Conserved Sequence/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/enzymology , Gene Expression Regulation/genetics , Genes, Insect/genetics , Histones/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Transcription Initiation Site , Transcription, Genetic/genetics
8.
Genetics ; 172(4): 2379-90, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16452138

ABSTRACT

Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster to characterize phenotypes caused by Ppt1 deficiency in flies. Ppt1-deficient flies accumulate abnormal autofluorescent storage material predominantly in the adult CNS and have a life span 30% shorter than wild type, phenotypes that generally recapitulate disease-associated phenotypes common to all forms of NCL. In contrast, some phenotypes of Ppt1-deficient flies differed from those observed in human INCL. Storage material in flies appeared as highly laminar spherical deposits in cells of the brain and as curvilinear profiles in cells of the thoracic ganglion. This contrasts with the granular deposits characteristic of human INCL. In addition, the reduced life span of Ppt1-deficient flies is not caused by progressive death of CNS neurons. No changes in brain morphology or increases in apoptotic cell death of CNS neurons were detected in Ppt1-deficient flies, even at advanced ages. Thus, Ppt1-deficient flies accumulate abnormal storage material and have a shortened life span without evidence of concomitant neurodegeneration.


Subject(s)
Drosophila melanogaster/genetics , Thiolester Hydrolases/genetics , Thiolester Hydrolases/physiology , Animals , Apoptosis , Disease Models, Animal , Drosophila melanogaster/physiology , Female , Male , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Neurodegenerative Diseases/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Neurons/metabolism , Phenotype , RNA Interference
9.
Science ; 306(5704): 2084-7, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15528408

ABSTRACT

Phosphorylation of the human histone variant H2A.X and H2Av, its homolog in Drosophila melanogaster, occurs rapidly at sites of DNA double-strand breaks. Little is known about the function of this phosphorylation or its removal during DNA repair. Here, we demonstrate that the Drosophila Tip60 (dTip60) chromatin-remodeling complex acetylates nucleosomal phospho-H2Av and exchanges it with an unmodified H2Av. Both the histone acetyltransferase dTip60 as well as the adenosine triphosphatase Domino/p400 catalyze the exchange of phospho-H2Av. Thus, these data reveal a previously unknown mechanism for selective histone exchange that uses the concerted action of two distinct chromatin-remodeling enzymes within the same multiprotein complex.


Subject(s)
Acetyltransferases/metabolism , DNA Damage , Drosophila melanogaster/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Nucleosomes/metabolism , Acetyl Coenzyme A/metabolism , Acetylation , Acetyltransferases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Line , DNA Repair , Dimerization , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Histone Acetyltransferases , Phosphorylation , RNA Interference , Recombinant Proteins/metabolism , Transcription Factors/metabolism
10.
Gene ; 312: 271-9, 2003 Jul 17.
Article in English | MEDLINE | ID: mdl-12909364

ABSTRACT

Batten disease or neuronal ceroid lipofuscinoses (NCL) are a group of genetic neurodegenerative diseases that primarily afflict infants and children and are characterized by progressive loss of brain functions caused by the death of central nervous system (CNS) neurons. The most severe form of the disease is infantile NCL (INCL). INCL is caused by mutations in the palmitoyl-protein thioesterase 1 (PPT1) gene, which encodes a palmitoyl-protein thioesterase 1 enzyme that cleaves long-chain fatty acids from S-acylated proteins within the lysosome. How the loss of this activity causes the death of CNS neurons is not known. A PPT1 homolog and palmitoyl-protein thioesterase 1 enzyme activity were characterized in Drosophila melanogaster as an initial step in developing Drosophila as a model system for studying the etiology of INCL. Predicted gene CG12108 in region 8A2 of the X chromosome is 55% identical and 72% similar to human PPT1 and contains conserved catalytic residues and sites of glycosylation. Northern-blot hybridizations revealed a major 1.5 kb CG12108 transcript in unfertilized eggs, embryos, larvae, pupae, adult head and thorax, ovary, testis, and S2 tissue culture cells, as well as several minor mRNA species in some tissues. Levels of the 1.5 kb transcript were fairly uniform among tissues except in testis, where the transcript was enriched 5-fold. The same tissues also contained palmitoyl-protein thioesterase 1 enzyme activity measured using the fluorometric substrate 4-methylumbelliferyl-6-thiopalmitoyl-beta-D-glucoside. Enzyme activity was highest in testis and varied among the other tissues to a greater extent than did CG12108 message, suggesting that CG12108 is subjected to post-transcriptional regulation. Finally, flies homozygous for a deletion that removes CG12108 and three unrelated neighboring genes had less than 3% of wildtype levels of enzyme activity, consistent with CG12108 encoding functional palmitoyl-protein thioesterase 1 activity and being the fly ortholog of human PPT1. CG12108 has been appropriately renamed Ppt1.


Subject(s)
Drosophila/enzymology , Thiolester Hydrolases/genetics , Amino Acid Sequence , Animals , Blotting, Northern , Cell Line , Drosophila/cytology , Drosophila/genetics , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Genes, Insect/genetics , Humans , Male , Models, Molecular , Molecular Sequence Data , Protein Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism
11.
Nucleic Acids Res ; 30(17): 3698-705, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-12202754

ABSTRACT

The response of eukaryotic cells to the formation of a double-strand break (DSB) in chromosomal DNA is highly conserved. One of the earliest responses to DSB formation is phosphorylation of the C-terminal tail of H2A histones located in nucleosomes near the break. Histone variant H2AX and core histone H2A are phosphorylated in mammals and budding yeast, respectively. We demonstrate the DSB-induced phosphorylation of histone variant H2Av in Drosophila melanogaster. H2Av is a member of the H2AZ family of histone variants. Ser137 within an SQ motif located near the C- terminus of H2Av was phosphorylated in response to gamma-irradiation in both tissue culture cells and larvae. Phosphorylation was detected within 1 min of irradiation and detectable after only 0.3 Gy of radiation exposure. Photochemically induced DSBs, but not general oxidative damage or UV-induced nicking of DNA, caused H2Av phosphorylation, suggesting that phosphorylation is DSB specific. Imaginal disc cells from Drosophila expressing a mutant allele of H2Av with its C-terminal tail deleted, and therefore unable to be phosphorylated, were more sensitive to radiation-induced apoptosis than were wildtype controls, suggesting that phosphorylation of H2Av is important for repair of radiation-induced DSBs. These observations suggest that in addition to providing the function of an H2AZ histone, H2Av is also the functional homolog in Drosophila of H2AX.


Subject(s)
Apoptosis/radiation effects , DNA Damage , Drosophila/genetics , Histones/metabolism , Amino Acid Sequence , Animals , Apoptosis/genetics , Blotting, Western , Cell Line , DNA/genetics , DNA/metabolism , DNA Repair , Drosophila/metabolism , Drosophila/radiation effects , Genotype , Histones/genetics , Larva/cytology , Larva/genetics , Larva/radiation effects , Molecular Sequence Data , Mutation , Phosphorylation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...