Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 192(7): 2020-1, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20118253

ABSTRACT

Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related enterobacteria revealed signs of pathoadaptation to rosaceous hosts.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Erwinia amylovora/genetics , Genome, Bacterial , Enterobacteriaceae/genetics , Evolution, Molecular , Molecular Sequence Data , Plant Diseases/microbiology , Rosaceae/microbiology , Sequence Analysis, DNA
2.
Mol Plant Microbe Interact ; 21(12): 1549-60, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18986251

ABSTRACT

We compare genome sequences of three closely related soft-rot pathogens that vary in host range and geographical distribution to identify genetic differences that could account for lifestyle differences. The isolates compared, Pectobacterium atrosepticum SCRI1043, P. carotovorum WPP14, and P. brasiliensis 1692, represent diverse lineages of the genus. P. carotovorum and P. brasiliensis genome contigs, generated by 454 pyrosequencing ordered by reference to the previously published complete circular chromosome of P. atrosepticum genome and each other, account for 96% of the predicted genome size. Orthologous proteins encoded by P. carotovorum and P. brasiliensis are approximately 95% identical to each other and 92% identical to P. atrosepticum. Multiple alignment using Mauve identified a core genome of 3.9 Mb conserved among these Pectobacterium spp. Each core genome is interrupted at many points by species-specific insertions or deletions (indels) that account for approximately 0.9 to 1.1 Mb. We demonstrate that the presence of a hrpK-like type III secretion system-dependent effector protein in P. carotovorum and P. brasiliensis and its absence from P. atrosepticum is insufficient to explain variability in their response to infection in a plant. Additional genes that vary among these species include those encoding peptide toxin production, enzyme production, secretion proteins, and antibiotic production, as well as differences in more general aspects of gene regulation and metabolism that may be relevant to pathogenicity.


Subject(s)
Chromosomes, Bacterial/genetics , Genome, Bacterial , Genomics , Pectobacterium/genetics , Contig Mapping , DNA, Bacterial/genetics , Genes, Bacterial , INDEL Mutation , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
3.
Appl Environ Microbiol ; 67(4): 1911-21, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282649

ABSTRACT

In an effort to efficiently discover genes in the diazotrophic endophyte of maize, Klebsiella pneumoniae 342, DNA from strain 342 was hybridized to a microarray containing 96% (n = 4,098) of the annotated open reading frames from Escherichia coli K-12. Using a criterion of 55% identity or greater, 3,000 (70%) of the E. coli K-12 open reading frames were also found to be present in strain 342. Approximately 24% (n = 1,030) of the E. coli K-12 open reading frames are absent in strain 342. For 1.6% (n = 68) of the open reading frames, the signal was too low to make a determination regarding the presence or absence of the gene. Genes with high identity between the two organisms are those involved in energy metabolism, amino acid metabolism, fatty acid metabolism, cofactor synthesis, cell division, DNA replication, transcription, translation, transport, and regulatory proteins. Functions that were less highly conserved included carbon compound metabolism, membrane proteins, structural proteins, putative transport proteins, cell processes such as adaptation and protection, and central intermediary metabolism. Open reading frames of E. coli K-12 with little or no identity in strain 342 included putative regulatory proteins, putative chaperones, surface structure proteins, mobility proteins, putative enzymes, hypothetical proteins, and proteins of unknown function, as well as genes presumed to have been acquired by lateral transfer from sources such as phage, plasmids, or transposons. The results were in agreement with the physiological properties of the two strains. Whole genome comparisons by genomic interspecies microarray hybridization are shown to rapidly identify thousands of genes in a previously uncharacterized bacterial genome provided that the genome of a close relative has been fully sequenced. This approach will become increasingly more useful as more full genome sequences become available.


Subject(s)
Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Zea mays/microbiology , Escherichia coli/metabolism , Gene Expression Profiling , Genes, Bacterial/genetics , Genome, Bacterial , Klebsiella pneumoniae/metabolism
4.
Nature ; 409(6819): 529-33, 2001 Jan 25.
Article in English | MEDLINE | ID: mdl-11206551

ABSTRACT

The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions--all of which could be targets for surveillance.


Subject(s)
Escherichia coli O157/genetics , Genome, Bacterial , Base Sequence , Chromosome Mapping , Chromosomes, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli O157/pathogenicity , Genetic Variation , Humans , Molecular Sequence Data , Polymorphism, Genetic , Sequence Analysis, DNA , Species Specificity , Virulence/genetics
5.
Nucleic Acids Res ; 27(19): 3821-35, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10481021

ABSTRACT

We have established high resolution methods for global monitoring of gene expression in Escherichia coli. Hybridization of radiolabeled cDNA to spot blots on nylon membranes was compared to hybridization of fluorescently-labeled cDNA to glass microarrays for efficiency and reproducibility. A complete set of PCR primers was created for all 4290 annotated open reading frames (ORFs) from the complete genome sequence of E.coli K-12 (MG1655). Glass- and nylon-based arrays of PCR products were prepared and used to assess global changes in gene expression. Full-length coding sequences for array printing were generated by two-step PCR amplification. In this study we measured changes in RNA levels after exposure to heat shock and following treatment with isopropyl-beta-D-thiogalactopyranoside (IPTG). Both radioactive and fluorescence-based methods showed comparable results. Treatment with IPTG resulted in high level induction of the lacZYA and melAB operons. Following heat shock treatment 119 genes were shown to have significantly altered expression levels, including 35 previously uncharacterized ORFs and most genes of the heat shock stimulon. Analysis of spot intensities from hybridization to replicate arrays identified sets of genes with signals consistently above background suggesting that at least 25% of genes were expressed at detectable levels during growth in rich media.


Subject(s)
Escherichia coli/genetics , Gene Expression Profiling , Genome, Bacterial , Oligonucleotide Array Sequence Analysis , Escherichia coli/drug effects , Genes, Bacterial , Heat-Shock Response , Isopropyl Thiogalactoside/pharmacology , Transcription, Genetic
6.
Science ; 277(5331): 1453-62, 1997 Sep 05.
Article in English | MEDLINE | ID: mdl-9278503

ABSTRACT

The 4,639,221-base pair sequence of Escherichia coli K-12 is presented. Of 4288 protein-coding genes annotated, 38 percent have no attributed function. Comparison with five other sequenced microbes reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident. The largest family of paralogous proteins contains 80 ABC transporters. The genome as a whole is strikingly organized with respect to the local direction of replication; guanines, oligonucleotides possibly related to replication and recombination, and most genes are so oriented. The genome also contains insertion sequence (IS) elements, phage remnants, and many other patches of unusual composition indicating genome plasticity through horizontal transfer.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , Sequence Analysis, DNA , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophage lambda/genetics , Base Composition , Binding Sites , Chromosome Mapping , DNA Replication , DNA Transposable Elements , DNA, Bacterial/genetics , Genes, Bacterial , Molecular Sequence Data , Mutation , Operon , RNA, Bacterial/genetics , RNA, Transfer/genetics , Recombination, Genetic , Regulatory Sequences, Nucleic Acid , Repetitive Sequences, Nucleic Acid , Sequence Homology, Amino Acid
7.
J Mol Evol ; 41(1): 46-53, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7608988

ABSTRACT

We have characterized two cDNA clones from the nematode Caenorhabditis elegans that display similarity to the alcohol dehydrogenase (ADH) gene family. The nucleotide sequences of these cDNAs predict that they encode Zn-containing long-chain ADH enzymes. Phylogenetic analysis suggests that one is most similar to dimeric class III ADHs found in diverse taxa; the other is most similar to the tetrameric forms of ADH previously described only in fungi.


Subject(s)
Alcohol Dehydrogenase/genetics , Caenorhabditis elegans/genetics , Multigene Family , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/enzymology , Cloning, Molecular , DNA Primers , Fungi/genetics , Humans , Mammals/genetics , Molecular Sequence Data , Plants/genetics , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...