Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 292(5520): 1319-25, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11358999

ABSTRACT

The RNA world hypothesis regarding the early evolution of life relies on the premise that some RNA sequences can catalyze RNA replication. In support of this conjecture, we describe here an RNA molecule that catalyzes the type of polymerization needed for RNA replication. The ribozyme uses nucleoside triphosphates and the coding information of an RNA template to extend an RNA primer by the successive addition of up to 14 nucleotides-more than a complete turn of an RNA helix. Its polymerization activity is general in terms of the sequence and the length of the primer and template RNAs, provided that the 3' terminus of the primer pairs with the template. Its polymerization is also quite accurate: when primers extended by 11 nucleotides were cloned and sequenced, 1088 of 1100 sequenced nucleotides matched the template.


Subject(s)
RNA, Catalytic/metabolism , RNA-Dependent RNA Polymerase/metabolism , RNA/biosynthesis , Base Sequence , Conserved Sequence/genetics , Directed Molecular Evolution , Molecular Sequence Data , Mutagenesis/genetics , Nucleic Acid Conformation , RNA/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, RNA , Substrate Specificity , Templates, Genetic
2.
Biochemistry ; 39(50): 15556-62, 2000 Dec 19.
Article in English | MEDLINE | ID: mdl-11112542

ABSTRACT

In support of the idea that certain RNA molecules might be able to catalyze RNA replication, a ribozyme was previously generated that synthesizes short segments of RNA in a reaction modeled after that of proteinaceous RNA polymerases. Here, we describe substrate recognition by this polymerase ribozyme. Altering base or sugar moieties of the nucleoside triphosphate only moderately affects its utilization, provided that the alterations do not disrupt Watson-Crick pairing to the template. Correctly paired nucleotides have both a lower K(m) and a higher k(cat), suggesting that differential binding and orientation each play roles in discriminating matched from mismatched nucleotides. Binding of the pyrophosphate leaving group appears weak, as evidenced by a very inefficient pyrophosphate-exchange reaction, the reverse of the primer-extension reaction. Indeed, substitutions at the gamma-phosphate can be tolerated, although poorly. Thio substitutions of oxygen atoms at the reactive phosphate exert effects similar to those seen with cellular polymerases, leaving open the possibility of an active site analogous to those of protein enzymes. The polymerase ribozyme, derived from an efficient RNA ligase ribozyme, can achieve the very fast k(cat) of the parent ribozyme when the substrate of the polymerase (GTP) is replaced by an extended substrate (pppGGA), in which the GA dinucleotide extension corresponds to the second and third nucleotides of the ligase. This suggests that the GA dinucleotide, which had been deleted when converting the ligase into a polymerase, plays an important role in orienting the 5'-terminal nucleoside. Polymerase constructs that restore this missing orientation function should achieve much more efficient and perhaps more accurate RNA polymerization.


Subject(s)
RNA, Catalytic/metabolism , Animals , Catalysis , Nucleotides/metabolism , RNA, Catalytic/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...