Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
medRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826461

ABSTRACT

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617310

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.

3.
Epigenetics ; 19(1): 2309826, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38300850

ABSTRACT

Modelling the regulatory mechanisms that determine cell fate, response to external perturbation, and disease state depends on measuring many factors, a task made more difficult by the plasticity of the epigenome. Scanning the genome for the sequence patterns defined by Position Weight Matrices (PWM) can be used to estimate transcription factor (TF) binding locations. However, this approach does not incorporate information regarding the epigenetic context necessary for TF binding. CpG methylation is an epigenetic mark influenced by environmental factors that is commonly assayed in human cohort studies. We developed a framework to score inferred TF binding locations using methylation data. We intersected motif locations identified using PWMs with methylation information captured in both whole-genome bisulfite sequencing and Illumina EPIC array data for six cell lines, scored motif locations based on these data, and compared with experimental data characterizing TF binding (ChIP-seq). We found that for most TFs, binding prediction improves using methylation-based scoring compared to standard PWM-scores. We also illustrate that our approach can be generalized to infer TF binding when methylation information is only proximally available, i.e. measured for nearby CpGs that do not directly overlap with a motif location. Overall, our approach provides a framework for inferring context-specific TF binding using methylation data. Importantly, the availability of DNA methylation data in existing patient populations provides an opportunity to use our approach to understand the impact of methylation on gene regulatory processes in the context of human disease.


Subject(s)
DNA Methylation , Transcription Factors , Humans , Binding Sites , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Binding , Gene Expression Regulation
4.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38187609

ABSTRACT

The steady accumulation of senescent cells with aging creates tissue environments that aid cancer evolution. Aging cell states are highly heterogeneous. 'Deep senescent' cells rely on healthy mitochondria to fuel a strong proinflammatory secretome, including cytokines, growth and transforming signals. Yet, the physiological triggers of senescence such as the reactive oxygen species (ROS) can also trigger mitochondrial dysfunction, and sufficient energy deficit to alter their secretome and cause chronic oxidative stress - a state termed Mitochondrial Dysfunction-Associated Senescence (MiDAS). Here, we offer a mechanistic hypothesis for the molecular processes leading to MiDAS, along with testable predictions. To do this we have built a Boolean regulatory network model that qualitatively captures key aspects of mitochondrial dynamics during cell cycle progression (hyper-fusion at the G1/S boundary, fission in mitosis), apoptosis (fission and dysfunction) and glucose starvation (reversible hyper-fusion), as well as MiDAS in response to SIRT3 knockdown or oxidative stress. Our model reaffirms the protective role of NAD + and external pyruvate. We offer testable predictions about the growth factor- and glucose-dependence of MiDAS and its reversibility at different stages of reactive oxygen species (ROS)-induced senescence. Our model provides mechanistic insights into the distinct stages of DNA-damage induced senescence, the relationship between senescence and epithelial-to-mesenchymal transition in cancer and offers a foundation for building multiscale models of tissue aging. Highlights: Boolean regulatory network model reproduces mitochondrial dynamics during cell cycle progression, apoptosis, and glucose starvation. Model offers a mechanistic explanation for the positive feedback loop that locks in Mitochondrial Dysfunction-Associated Senescence (MiDAS), involving autophagy-resistant, hyperfused, dysfunctional mitochondria. Model reproduces ROS-mediated mitochondrial dysfunction and suggests that MiDAS is part of the early phase of damage-induced senescence. Model predicts that cancer-driving mutations that bypass the G1/S checkpoint generally increase the incidence of MiDAS, except for p53 loss.

5.
medRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260473

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

6.
Nucleic Acids Res ; 52(1): e5, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37953325

ABSTRACT

The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.


Subject(s)
Gene Expression Regulation , Signal Transduction , Databases, Factual , Gene Regulatory Networks
7.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045270

ABSTRACT

Membrane-associated heparan sulfate (HS) proteoglycans (PGs) contribute to the regulation of extracellular cellular signaling cues, such as growth factors (GFs) and chemokines, essential for normal organismal functions and implicated in various pathophysiologies. PGs accomplish this by presenting high affinity binding sites for GFs and their receptors through highly sulfated regions of their HS polysaccharide chains. The composition of HS, and thus GF-binding specificity, are determined during biosynthetic assembly prior to installation at the cell surface. Two extracellular 6- O -endosulfatase enzymes (Sulf-1 and Sulf-2) can uniquely further edit mature HS and alter its interactions with GFs by removing specific sulfation motifs from their recognition sequence on HS. Despite being implicated as signaling regulators during development and in disease, the Sulfs have resisted structural characterization, and their substrate specificity and effects on GF interactions with HS are still poorly defined. Using a panel of PG-mimetics comprising compositionally-defined bioengineered recombinant HS (rHS) substrates in combination with GF binding and enzyme activity assays, we have discovered that Sulfs control GF-HS interactions through a combination of catalytic processing and competitive blocking of high affinity GF-binding sites, providing a new conceptual framework for understanding the functional impact of these enzymes in biological context. Although the contributions from each mechanism are both Sulf- and GF-dependent, the PG-mimetic platform allows for rapid analysis of these complex relationships. Significance Statement: Cells rely on extracellular signals such as growth factors (GFs) to mediate critical biological functions. Membrane-associated proteins bearing negatively charged heparan sulfate (HS) sugar chains engage with GFs and present them to their receptors, which regulates their activity. Two extracellular sulfatase (Sulf) enzymes can edit HS and alter GF interactions and activity, although the precise mechanisms remain unclear. By using chemically defined HS-mimetics as probes, we have discovered that Sulfs can modulate HS by means of catalytic alterations and competitive blocking of GF-binding sites. These unique dual activities distinguish Sulfs from other enzymes and provide clues to their roles in development and disease.

8.
BMC Biol ; 21(1): 296, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38155351
9.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014256

ABSTRACT

Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between molecules that regulate biological processes and hence can provide insights into drivers of biological systems. Inferring co-expression networks is a critical element of GRN inference as the correlation between expression patterns may indicate that genes are coregulated by common factors. However, methods that estimate co-expression networks generally derive an aggregate network representing the mean regulatory properties of the population and so fail to fully capture population heterogeneity. To address these concerns, we introduce BONOBO (Bayesian Optimized Networks Obtained By assimilating Omics data), a scalable Bayesian model for deriving individual sample-specific co-expression networks by recognizing variations in molecular interactions across individuals. For every sample, BONOBO assumes a Gaussian distribution on the log-transformed centered gene expression and a conjugate prior distribution on the sample-specific co-expression matrix constructed from all other samples in the data. Combining the sample-specific gene expression with the prior distribution, BONOBO yields a closed-form solution for the posterior distribution of the sample-specific co-expression matrices, thus making the method extremely scalable. We demonstrate the utility of BONOBO in several contexts, including analyzing gene regulation in yeast transcription factor knockout studies, prognostic significance of miRNA-mRNA interaction in human breast cancer subtypes, and sex differences in gene regulation within human thyroid tissue. We find that BONOBO outperforms other sample-specific co-expression network inference methods and provides insight into individual differences in the drivers of biological processes.

10.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37802917

ABSTRACT

MOTIVATION: Gene co-expression measurements are widely used in computational biology to identify coordinated expression patterns across a group of samples. Coordinated expression of genes may indicate that they are controlled by the same transcriptional regulatory program, or involved in common biological processes. Gene co-expression is generally estimated from RNA-Sequencing data, which are commonly normalized to remove technical variability. Here, we demonstrate that certain normalization methods, in particular quantile-based methods, can introduce false-positive associations between genes. These false-positive associations can consequently hamper downstream co-expression network analysis. Quantile-based normalization can, however, be extremely powerful. In particular, when preprocessing large-scale heterogeneous data, quantile-based normalization methods such as smooth quantile normalization can be applied to remove technical variability while maintaining global differences in expression for samples with different biological attributes. RESULTS: We developed SNAIL (Smooth-quantile Normalization Adaptation for the Inference of co-expression Links), a normalization method based on smooth quantile normalization specifically designed for modeling of co-expression measurements. We show that SNAIL avoids formation of false-positive associations in co-expression as well as in downstream network analyses. Using SNAIL, one can avoid arbitrary gene filtering and retain associations to genes that only express in small subgroups of samples. This highlights the method's potential future impact on network modeling and other association-based approaches in large-scale heterogeneous data. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNAIL algorithm and code to reproduce the analyses described in this work can be found in the GitHub repository https://github.com/kuijjerlab/PySNAIL.


Subject(s)
Gene Expression Profiling , RNA , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Algorithms , Computational Biology
11.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37425858

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with various proposed environmental risk factors and a rapidly increasing prevalence. Mounting evidence suggests a potential role of vitamin D deficiency in ASD pathogenesis, though the causal mechanisms remain largely unknown. Here we investigate the impact of vitamin D on child neurodevelopment through an integrative network approach that combines metabolomic profiles, clinical traits, and neurodevelopmental data from a pediatric cohort. Our results show that vitamin D deficiency is associated with changes in the metabolic networks of tryptophan, linoleic, and fatty acid metabolism. These changes correlate with distinct ASD-related phenotypes, including delayed communication skills and respiratory dysfunctions. Additionally, our analysis suggests the kynurenine and serotonin sub-pathways may mediate the effect of vitamin D on early childhood communication development. Altogether, our findings provide metabolome-wide insights into the potential of vitamin D as a therapeutic option for ASD and other communication disorders.

12.
Genome Biol ; 24(1): 45, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894939

ABSTRACT

Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.


Subject(s)
Gene Regulatory Networks , Neoplasms , Humans , Algorithms , Software , Multiomics , Computational Biology/methods
13.
Wound Repair Regen ; 31(2): 156-170, 2023 03.
Article in English | MEDLINE | ID: mdl-36571451

ABSTRACT

Most human tissue injuries lead to the formation of a fibrous scar and result in the loss of functional tissue. One adult tissue that exhibits a more regenerative response to injury with minimal scarring is the oral mucosa. We generated a microarray gene expression dataset to examine the response to injury in human palate and skin excisional biopsies spanning the first 7 days after wounding. Differential expression analyses were performed in each tissue to identify genes overexpressed or underexpressed over time when compared to baseline unwounded tissue gene expression levels. To attribute biological processes of interest to these gene expression changes, gene set enrichment analysis was used to identify core gene sets that are enriched over the time-course of the wound healing process with respect to unwounded tissue. This analysis identified gene sets uniquely enriched in either palate or skin wounds and gene sets that are enriched in both tissues in at least one time point after injury. Finally, a cell type enrichment analysis was performed to better understand the cell type distribution in these tissues and how it changes over the time course of wound healing. This work provides a source of human wound gene expression data that includes two tissue types with distinct regenerative and scarring phenotypes.


Subject(s)
Cicatrix , Wound Healing , Adult , Humans , Wound Healing/physiology , Cicatrix/pathology , Skin/pathology , Palate/pathology
14.
JAMIA Open ; 5(4): ooac090, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36325307

ABSTRACT

Objectives: One challenge that arises when analyzing mobile health (mHealth) data is that updates to the proprietary algorithms that process these data can change apparent patterns. Since the timings of these updates are not publicized, an analytic approach is necessary to determine whether changes in mHealth data are due to lifestyle behaviors or algorithmic updates. Existing methods for identifying changepoints do not consider multiple types of changepoints, may require prespecifying the number of changepoints, and often involve nonintuitive parameters. We propose a novel approach, Automated Selection of Changepoints using Empirical P-values and Trimming (ASCEPT), to select an optimal set of changepoints in mHealth data. Materials and Methods: ASCEPT involves 2 stages: (1) identification of a statistically significant set of changepoints from sequential iterations of a changepoint detection algorithm; and (2) trimming changepoints within linear and seasonal trends. ASCEPT is available at https://github.com/matthewquinn1/changepointSelect. Results: We demonstrate ASCEPT's utility using real-world mHealth data collected through the Precision VISSTA study. We also demonstrate that ASCEPT outperforms a comparable method, circular binary segmentation, and illustrate the impact when adjusting for changepoints in downstream analysis. Discussion: ASCEPT offers a practical approach for identifying changepoints in mHealth data that result from algorithmic updates. ASCEPT's only required parameters are a significance level and goodness-of-fit threshold, offering a more intuitive option compared to other approaches. Conclusion: ASCEPT provides an intuitive and useful way to identify which changepoints in mHealth data are likely the result of updates to the underlying algorithms that process the data.

15.
Lancet Healthy Longev ; 3(7): e501-e512, 2022 07.
Article in English | MEDLINE | ID: mdl-35821792

ABSTRACT

Observational studies suggest that nutritional factors have a potential cognitive benefit. However, systematic reviews of randomised trials of dietary and nutritional supplements have reported largely null effects on cognitive outcomes and have highlighted study inconsistencies and other limitations. In this Personal View, the Nutrition for Dementia Prevention Working Group presents what we consider to be limitations in the existing nutrition clinical trials for dementia prevention. On the basis of this evidence, we propose recommendations for incorporating dietary patterns and the use of genetic, and nutrition assessment tools, biomarkers, and novel clinical trial designs to guide future trial developments. Nutrition-based research has unique challenges that could require testing both more personalised interventions in targeted risk subgroups, identified by nutritional and other biomarkers, and large-scale and pragmatic study designs for more generalisable public health interventions across diverse populations.


Subject(s)
Dementia , Nutritional Status , Biomarkers , Diet , Dietary Supplements , Humans
16.
17.
Front Cardiovasc Med ; 9: 876591, 2022.
Article in English | MEDLINE | ID: mdl-35722109

ABSTRACT

Pericytes are mesenchymal-derived mural cells that wrap around capillaries and directly contact endothelial cells. Present throughout the body, including the cardiovascular system, pericytes are proposed to have multipotent cell-like properties and are involved in numerous biological processes, including regulation of vascular development, maturation, permeability, and homeostasis. Despite their physiological importance, the functional heterogeneity, differentiation process, and pathological roles of pericytes are not yet clearly understood, in part due to the inability to reliably distinguish them from other mural cell populations. Our study focused on identifying pericyte-specific markers by analyzing single-cell RNA sequencing data from tissue-specific mouse pericyte populations generated by the Tabula Muris Senis. We identified the mural cell cluster in murine lung, heart, kidney, and bladder that expressed either of two known pericyte markers, Cspg4 or Pdgfrb. We further defined pericytes as those cells that co-expressed both markers within this cluster. Single-cell differential expression gene analysis compared this subset with other clusters that identified potential pericyte marker candidates, including Kcnk3 (in the lung); Rgs4 (in the heart); Myh11 and Kcna5 (in the kidney); Pcp4l1 (in the bladder); and Higd1b (in lung and heart). In addition, we identified novel markers of tissue-specific pericytes and signaling pathways that may be involved in maintaining their identity. Moreover, the identified markers were further validated in Human Lung Cell Atlas and human heart single-cell RNAseq databases. Intriguingly, we found that markers of heart and lung pericytes in mice were conserved in human heart and lung pericytes. In this study, we, for the first time, identified specific pericyte markers among lung, heart, kidney, and bladder and reveal differentially expressed genes and functional relationships between mural cells.

19.
Respir Res ; 23(1): 69, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331221

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation. METHODS: In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein-protein interaction networks. RESULTS: We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways. CONCLUSIONS: The modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.


Subject(s)
Protein Interaction Maps , Pulmonary Disease, Chronic Obstructive , DNA Methylation , Female , Humans , Lung/metabolism , Pregnancy , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/adverse effects , Smoking/genetics
20.
Genome Res ; 32(3): 524-533, 2022 03.
Article in English | MEDLINE | ID: mdl-35193937

ABSTRACT

Understanding how each person's unique genotype influences their individual patterns of gene regulation has the potential to improve our understanding of human health and development, and to refine genotype-specific disease risk assessments and treatments. However, the effects of genetic variants are not typically considered when constructing gene regulatory networks, despite the fact that many disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding. We developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network for each individual in a study population. EGRET begins by constructing a genotype-informed TF-gene prior network derived using TF motif predictions, expression quantitative trait locus (eQTL) data, individual genotypes, and the predicted effects of genetic variants on TF binding. It then uses a technique known as message passing to integrate this prior network with gene expression and TF protein-protein interaction data to produce a refined, genotype-specific regulatory network. We used EGRET to infer gene regulatory networks for two blood-derived cell lines and identified genotype-associated, cell line-specific regulatory differences that we subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential ChIP-seq TF binding. We also inferred EGRET networks for three cell types from each of 119 individuals and identified cell type-specific regulatory differences associated with diseases related to those cell types. EGRET is, to our knowledge, the first method that infers networks reflective of individual genetic variation in a way that provides insight into the genetic regulatory associations driving complex phenotypes.


Subject(s)
Gene Regulatory Networks , Transcription Factors , Chromatin , Chromatin Immunoprecipitation , Genotype , Humans , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...