Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23366040

ABSTRACT

HeartLander is a medical robot proposed for minimally invasive epicardial intervention on the beating heart. To date, all prototypes have used suction to gain traction on the epicardium. Gecko-foot-inspired micro-fibers have been proposed for repeatable adhesion to surfaces. In this paper, a method for improving the traction of HeartLander on biological tissue is presented. The method involves integration of gecko-inspired fibrillar adhesives on the inner surfaces of the suction chambers of HeartLander. Experiments have been carried out on muscle tissue ex vivo assessing the traction performance of the modified HeartLander with bio-inspired adhesive. The adhesive fibers are found to improve traction on muscle tissue by 57.3 %.


Subject(s)
Cardiac Surgical Procedures , Hindlimb , Lizards , Robotics , Animals , Cardiac Surgical Procedures/instrumentation , Cardiac Surgical Procedures/methods , Hindlimb/anatomy & histology , Hindlimb/physiology , Humans , Lizards/anatomy & histology , Lizards/physiology , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Robotics/instrumentation , Robotics/methods
2.
J Mech Behav Biomed Mater ; 4(8): 1727-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22098873

ABSTRACT

Capsule endoscopes are pill-size devices provided with a camera that capture images of the small intestine from inside the body after being ingested by a patient. The interaction between intestinal tissue and capsule endoscopes needs to be investigated to optimize capsule design while preventing tissue damage. To that purpose, a constitutive model that can reliably predict the mechanical response of the intestinal tissue under complex mechanical loading is required. This paper describes the development and numerical validation of a phenomenological constitutive model for the porcine duodenum, jejunum and ileum. Parameters characterizing the mechanical behavior of the material were estimated from planar biaxial test data, where intestinal tissue specimens were simultaneously loaded along the circumferential and longitudinal directions. Specimen-specific Fung constitutive models were able to accurately predict the planar stress-strain behavior of the tested samples under a wide range of loading conditions. To increase model generality, average anisotropic constitutive relationships were also generated for each tissue region by fitting average stress-strain curves to the Fung potential. Due to the observed variability in the direction of maximum stiffness, the average Fung models were less anisotropic than the specimen-specific models. Hence, average isotropic models in the Neo-Hookean and Mooney-Rivlin forms were attempted, but they could not adequately describe the degree of nonlinearity in the tissue. Values of the R2 for the nonlinear regressions were 0.17, 0.44 and 0.93 for the average Neo-Hookean, Mooney-Rivlin and Fung models, respectively. Average models were successfully implemented into FORTRAN routines and used to simulate capsule deployment with a finite element method analysis.


Subject(s)
Intestine, Small , Mechanical Phenomena , Models, Biological , Animals , Biomechanical Phenomena , Endoscopy , Intestine, Small/anatomy & histology , Intestine, Small/surgery , Materials Testing , Organ Specificity , Reproducibility of Results , Swine
3.
Biomacromolecules ; 12(2): 342-7, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21182292

ABSTRACT

We present a study on the effects of cross-linking on the adhesive properties of bio-inspired 3,4-dihydroxyphenylalanine (DOPA). DOPA has a unique catechol moiety found in adhesive proteins in marine organisms, such as mussels and polychaete, which results in strong adhesion in aquatic conditions. Incorporation of this functional group in synthetic polymers provides the basis for pressure-sensitive adhesives for use in a broad range of environments. A series of cross-linked DOPA-containing polymers were prepared by adding divinyl cross-linking agent ethylene glycol dimethacrylate (EGDMA) to monomer mixtures of dopamine methacrylamide (DMA) and 2-methoxyethyl acrylate (MEA). Samples were prepared using a solvent-free microwave-assisted polymerization reaction and compared to a similar series of cross-linked MEA materials. Cross-linking with EGDMA tunes the viscoelastic properties of the adhesive material and has the advantage of not reacting with the catechol group that is responsible for the excellent adhesive performance of this material. Adhesion strength was measured by uniaxial indentation tests, which indicated that 0.001 mol % of EGDMA-cross-linked copolymer showed the highest work of adhesion in dry conditions, but non-cross-linked DMA was the highest in wet conditions. The results suggest that there is an optimal cross-linking degree that displays the highest adhesion by balancing viscous and elastic behaviors of the polymer but this appears to depend on the conditions. This concentration of cross-linker is well below the theoretical percolation threshold, and we propose that subtle changes in polymer viscoelastic properties can result in significant improvements in adhesion of DOPA-based materials. The properties of lightly cross-linked poly(DMA-co-MEA) were investigated by measurement of the frequency dependence of the storage modulus (G') and loss modulus (G''). The frequency-dependence of G' and magnitude of G'' showed gradual decreases with the fraction of EGDMA. Loosely cross-linked DMA copolymers, containing 0% and 0.001 mol % of EGDMA-cross-linked copolymers, displayed rheological behavior appropriate for pressure-sensitive adhesives characterized by a higher G' at high frequencies and lower G' at low frequencies. Our results indicate that dimethacrylate cross-linking of DMA copolymers can be used to enhance the adhesive properties of this unique material.


Subject(s)
Acrylamides/chemistry , Adhesives/chemistry , Dopamine/chemistry , Viscoelastic Substances/chemistry , Acrylates/chemistry , Methacrylates/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Surface Properties
4.
Langmuir ; 26(22): 17357-62, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20879746

ABSTRACT

Using principles inspired by the study of naturally occurring sticky systems such as the micro- and nanoscale fibers on the toes of geckos and the adhesive proteins secreted by marine animals such as mussels, this study describes the development and evaluation of a novel patterned and coated elastomeric microfibrillar material for enhanced repeatable adhesion and shear in wet environments. A multistep fabrication process consisting of optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of polyurethane elastomeric microfibers with mushroom-shaped tips coated with a thin layer of lightly cross-linked p(DMA-co-MEA), an intrinsically adhesive synthetic polymer. Adhesion and shear force characterization of these arrays in contact with a glass hemisphere is demonstrated, and significant pull-off force, overall work of adhesion, and shear force enhancements in submerged aqueous environments are shown when compared to both unpatterned and uncoated samples, as well as previously evaluated patterned and coated arrays with differing geometry. Such materials may have potential value as repeatable adhesives for wet environments, such as for medical devices.


Subject(s)
Acrylates/chemistry , Adhesives/chemistry , Dopamine/analogs & derivatives , Elastomers/chemistry , Mechanical Phenomena , Microtechnology/instrumentation , Photochemical Processes , Polymerization/radiation effects , Polymers/chemistry , DNA/chemistry , Dihydroxyphenylalanine/chemistry , Dopamine/chemistry , Glass/chemistry , Methacrylates/chemistry
5.
Proc Natl Acad Sci U S A ; 107(40): 17095-100, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20858729

ABSTRACT

Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example.


Subject(s)
Nanotubes, Carbon/chemistry , Printing/methods , Animals , Dimethylpolysiloxanes/chemistry , Elasticity , Materials Testing , Nylons/chemistry , Printing/instrumentation , Silicon/chemistry , Stress, Mechanical , Surface Properties
6.
Langmuir ; 25(12): 6607-12, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19456091

ABSTRACT

In this work, we take previously developed gecko-foot-hair-inspired elastomer microfiber arrays with film-terminated and mushroom-shaped tips that have demonstrated enhanced adhesion with respect to unpatterned materials under dry conditions and coat them with synthetic DOPA-containing mussel-inspired polymers to enhance adhesion repeatedly in fully submerged wet environments. A new protocol for the development of this hybrid patterned, coated adhesive, which is suitable for use in contact with both wet and dry nonflat surfaces, is described. The experimental evaluation of repeatable adhesion under both wet and dry conditions for these materials is described and compared with unpatterned and/or uncoated materials. Macroscale reversible fibrillar adhesion enhancement on a nonflat, smooth glass surface when compared with unpatterned materials under fully submerged conditions is demonstrated with no suction effect.


Subject(s)
Acrylamides/chemistry , Adhesives , Dopamine/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Surface Properties
7.
IEEE Trans Biomed Eng ; 55(12): 2759-67, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19126455

ABSTRACT

This paper presents a new concept for an anchoring mechanism to enhance existing capsule endoscopes. The mechanism consists of three actuated legs with compliant feet lined with micropillar adhesives to be pressed into the intestine wall to anchor the device at a fixed location. These adhesive systems are inspired by gecko and beetle foot hairs. Single-leg and full capsule mathematical models of the forces generated by the legs are analyzed to understand capsule performance. Empirical friction models for the interaction of the adhesives with an intestinal substrate were experimentally determined in vitro using dry and oil-coated elastomer micropillar arrays with 140 microm pillar diameter, 105 microm spacing between pillars, and an aspect ratio of 1:1 on fresh porcine small intestine specimens. Capsule prototypes were also tested in a simulated intestine environment and compared with predicted peristaltic loads to assess the viability of the proposed design. The experimental results showed that a deployed 10 gr capsule robot can withstand axial peristaltic loads and anchor reliably when actuation forces are greater than 0.27 N using dry micropillars. Required actuation forces may be reduced significantly by using micropillars coated with a thin silicone oil layer.


Subject(s)
Adhesives/chemistry , Capsule Endoscopes , Microtechnology/instrumentation , Adhesiveness , Animals , Biomedical Technology/instrumentation , Bionics/methods , Elastomers/chemistry , Equipment Design , Equipment Failure Analysis , Friction , Intestine, Small/chemistry , Intestine, Small/pathology , Peristalsis , Robotics/instrumentation , Swine
8.
Water Res ; 39(14): 3320-32, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16009396

ABSTRACT

'Natural' treatment systems such as wetlands and reed beds have been proposed as sustainable means of reducing fluxes of faecal indicator organisms (FIOs) to recreational and shellfish harvesting waters. This is because FIO fluxes to coastal waters from both point (effluent) and diffuse (catchment) sources can cause non-compliance with microbiological standards for bathing and shellfish harvesting waters. The Water Framework Directive requires competent authorities in the member states to manage both point and diffuse sources of FIOs in an integrated manner to achieve compliance with 'good' water quality as defined in a series of daughter Directives. This study was undertaken to investigate the relative sources of FIOs to the popular bathing waters around Clacton, UK. In this predominantly arable (mainly cereal cropping) farming area, the principal land use predictor, explaining 76% of the variance in geometric mean presumptive Escherichia coli concentration at sub-catchment outlets during the bathing season, was the proportion of built-up (i.e. urbanised) land in each sub-catchment. This new finding contrasts with earlier studies in livestock farming regions where the proportion of improved grassland has proven to be the strongest predictor of microbial concentration. Also novel in this investigation, a flood defence wall has been built creating a wetland area which discharges every tidal cycle. The wetland produces over 97% reduction in the flux and concentrations of FIOs to the marine recreational waters. Also, FIO concentrations in water draining through the wetland to the sea were similar to concentrations measured in six UK sewage treatment plant effluents subject to secondary (biological) treatment followed by UV disinfection.


Subject(s)
Disinfection/methods , Ecosystem , Sewage/microbiology , Water Microbiology , Water Pollution/analysis , Agriculture , Bathing Beaches/standards , Cities , Colony Count, Microbial , Disasters , Enterobacteriaceae/isolation & purification , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Feces/microbiology , Geography , Oceans and Seas , Population Dynamics , United Kingdom , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...