Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214876

ABSTRACT

Background: Antitumor antibody, or targeted immunotherapy, has revolutionized cancer treatment and markedly improved patient outcomes. A prime example is the monoclonal antibody (mAb) trastuzumab, which targets human epidermal growth factor receptor 2 (HER2). However, like many targeted immunotherapies, only a subset of patients benefit from trastuzumab long-term. In addition to tumor-intrinsic factors, we hypothesize that host genetics may influence subsequent immune activation. Methods: To model the human population, we produced F1 crosses of genetically heterogeneous Diversity Outbred (DO) mice with BALB/c mice (DOCF1). Distinct DOCF1 mice were orthotopically implanted with the BALB/c-syngeneic TUBO mammary tumor line, which expresses the HER2 ortholog rat neu. Treatment with anti-neu mAb clone 7.16.4 began once tumors reached ∼200 mm 3 . Genetic linkage and quantitative trait locus (QTL) effects analyses in R/qtl2 identified loci associated with tumor growth rates. Locus validation was performed with BALB/c F1 crosses with recombinant-inbred Collaborative Cross (CC) strains selected for therapy-associated driver genetics (CCxCF1). The respective roles of natural killer (NK) cells and macrophages were investigated by selective depletion in vivo. Ex vivo macrophage antibody-dependent phagocytosis (ADCP) assays were evaluated by confocal microscopy using 7.16.4-opsonized E2Crimson-expressing TUBO tumor cells. Results: We observed a divergent response to anti-tumor antibody therapy in DOCF1 mice. Genetic linkage analysis detected a locus on chromosome 10 that correlates to a robust response to therapy, which was validated in CCxCF1 models. Single-cell RNA sequencing of tumors from responder and non-responder models identified key differences in tumor immune infiltrate composition, particularly within macrophage (Mφ) subsets. This is further supported by ex vivo analysis showing Mφ ADCP capacity correlates to in vivo treatment outcomes in both DOCF1 and CCxCF1 models. Conclusions: Host genetics play a key regulatory role in targeted immunotherapy outcomes, and putative causal genes are identified in murine chromosome 10 which may govern Mφ function during ADCP.

2.
Crit Care Med ; 51(6): 775-786, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36927631

ABSTRACT

OBJECTIVES: Implementing a predictive analytic model in a new clinical environment is fraught with challenges. Dataset shifts such as differences in clinical practice, new data acquisition devices, or changes in the electronic health record (EHR) implementation mean that the input data seen by a model can differ significantly from the data it was trained on. Validating models at multiple institutions is therefore critical. Here, using retrospective data, we demonstrate how Predicting Intensive Care Transfers and other UnfoReseen Events (PICTURE), a deterioration index developed at a single academic medical center, generalizes to a second institution with significantly different patient population. DESIGN: PICTURE is a deterioration index designed for the general ward, which uses structured EHR data such as laboratory values and vital signs. SETTING: The general wards of two large hospitals, one an academic medical center and the other a community hospital. SUBJECTS: The model has previously been trained and validated on a cohort of 165,018 general ward encounters from a large academic medical center. Here, we apply this model to 11,083 encounters from a separate community hospital. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The hospitals were found to have significant differences in missingness rates (> 5% difference in 9/52 features), deterioration rate (4.5% vs 2.5%), and racial makeup (20% non-White vs 49% non-White). Despite these differences, PICTURE's performance was consistent (area under the receiver operating characteristic curve [AUROC], 0.870; 95% CI, 0.861-0.878), area under the precision-recall curve (AUPRC, 0.298; 95% CI, 0.275-0.320) at the first hospital; AUROC 0.875 (0.851-0.902), AUPRC 0.339 (0.281-0.398) at the second. AUPRC was standardized to a 2.5% event rate. PICTURE also outperformed both the Epic Deterioration Index and the National Early Warning Score at both institutions. CONCLUSIONS: Important differences were observed between the two institutions, including data availability and demographic makeup. PICTURE was able to identify general ward patients at risk of deterioration at both hospitals with consistent performance (AUROC and AUPRC) and compared favorably to existing metrics.


Subject(s)
Critical Care , Patients' Rooms , Humans , Retrospective Studies , ROC Curve , Hospitals, Community
3.
Sci Rep ; 12(1): 11346, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790779

ABSTRACT

Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Ovarian Neoplasms , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Female , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Humans , Mice , Ovarian Neoplasms/drug therapy , Pyrimidines/metabolism , Tumor Microenvironment
4.
Front Immunol ; 13: 870110, 2022.
Article in English | MEDLINE | ID: mdl-35634303

ABSTRACT

The immune cytokine interleukin-12 (IL-12) is involved in cancer initiation and progression, autoimmunity, as well as graft versus host disease. The ability to monitor IL-12 via imaging may provide insight into various immune processes, including levels of antitumor immunity, inflammation, and infection due to its functions in immune signaling. Here, we report the development and preclinical evaluation of an antibody-based IL-12-specific positron emission tomography (PET) tracer. To mimic localized infection and stimulate IL-12 production, BALB/c mice were administered lipopolysaccharide (LPS) intramuscularly. [89Zr]Zr-DFO-αIL12 tracer was given one hour post LPS administration and PET images were taken after 5, 24, 48, and 72 hours. We observed significantly higher uptake in LPS-treated mice as compared to controls. Biodistribution of the tracer was evaluated in a separate cohort of mice, where tracer uptake was elevated in muscle, spleen, lymph nodes, and intestines after LPS administration. To evaluate the utility of [89Zr]Zr-DFO-αIL12 as an indicator of antigen presenting cell activation after cancer immunotherapy, we compared PET imaging with and without intratumoral delivery of oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (Adv/GM-CSF), which we have shown promotes anti-tumor immunity. BALB/c mice were inoculated orthotopically with the mouse mammary carcinoma line TUBO. Once TUBO tumors reached a volume of ~50 mm3, mice were treated with either three intratumoral injections of 108 PFU Adv/GM-CSF or vehicle control, given every other day. Upon the last dose, [89Zr]Zr-DFO-αIL12 was injected intravenously and 72 hours later all mice were imaged via PET. Tumor-specific uptake of [89Zr]Zr-DFO-αIL12 was higher in Adv/GM-CSF treated mice versus controls. Tissues were harvested after imaging, and elevated levels of macrophages and CD8+ Tc cells were detected in Adv/GM-CSF treated tumors by immunohistochemistry. We validated that IL-12 expression was induced after Adv/GM-CSF by qRT-PCR. Importantly, expression of genes activated by IL-12 (IFNγ, TNFα, and IL-18) were unaffected after IL-12 imaging relative to mice receiving an IgG control tracer, suggesting the tracer antibody does not significantly disrupt signaling. Our results indicate that targeting soluble cytokines such as IL-12 by PET imaging with antibody tracers may serve as a noninvasive method to evaluate the function of the immune milieu in situ.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-12 , Adenoviridae , Animals , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Immunity , Interleukin-12/genetics , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Tissue Distribution
5.
Oncoimmunology ; 11(1): 2064958, 2022.
Article in English | MEDLINE | ID: mdl-35481286

ABSTRACT

Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding eight inbred founder strains, and CC mice are recombinant inbred mice generated from the same eight founders. We generated 207 DOB6F1 mice representing 48 DO dams and demonstrated that these mice reliably accept the C57BL/6-syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with increased CD8 infiltration and 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.


Subject(s)
Collaborative Cross Mice , Immune Checkpoint Inhibitors , Animals , Genotype , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Mice, Inbred C57BL , Prolactin
6.
Oncogene ; 40(46): 6430-6442, 2021 11.
Article in English | MEDLINE | ID: mdl-34608266

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.


Subject(s)
Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , RNA Stability , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Up-Regulation
7.
Nat Commun ; 11(1): 3822, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732898

ABSTRACT

Alveolar macrophages (AMs) derived from embryonic precursors seed the lung before birth and self-maintain locally throughout adulthood, but are regenerated by bone marrow (BM) under stress conditions. However, the regulation of AM development and maintenance remains poorly understood. Here, we show that histone deacetylase 3 (HDAC3) is a key epigenetic factor required for AM embryonic development, postnatal homeostasis, maturation, and regeneration from BM. Loss of HDAC3 in early embryonic development affects AM development starting at E14.5, while loss of HDAC3 after birth affects AM homeostasis and maturation. Single-cell RNA sequencing analyses reveal four distinct AM sub-clusters and a dysregulated cluster-specific pathway in the HDAC3-deficient AMs. Moreover, HDAC3-deficient AMs exhibit severe mitochondrial oxidative dysfunction and deteriorative cell death. Mechanistically, HDAC3 directly binds to Pparg enhancers, and HDAC3 deficiency impairs Pparg expression and its signaling pathway. Our findings identify HDAC3 as a key epigenetic regulator of lung AM development and homeostasis.


Subject(s)
Histone Deacetylases/genetics , Homeostasis/genetics , Lung/metabolism , Macrophages, Alveolar/metabolism , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Ontology , Histone Deacetylases/deficiency , Histone Deacetylases/metabolism , Lung/embryology , Lung/growth & development , Macrophages, Alveolar/cytology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
8.
Front Microbiol ; 9: 1888, 2018.
Article in English | MEDLINE | ID: mdl-30186245

ABSTRACT

Human cytomegalovirus (HCMV) is an important pathogen in developing fetuses, neonates, and individuals with compromised immune systems. Gaps in our understanding of the mechanisms required for virion assembly stand in the way of development of antivirals targeting late stages of viral replication. During infection, HCMV causes a dramatic reorganization of the host endosecretory system, leading to the formation of the cytoplasmic virion assembly complex (cVAC), the site of virion assembly. As part of cVAC biogenesis, the composition and behavior of endosecretory organelles change. To gain more comprehensive understanding of the impact HCMV infection has on components of the cellular endocytic recycling compartment (ERC), we used previously published transcriptional and proteomic datasets to predict changes in the directionality of ERC trafficking. We identified infection-associated changes in gene expression that suggest shifts in the balance between endocytic and exocytic recycling pathways, leading to formation of a secretory trap within the cVAC. Conversely, there was a corresponding shift favoring outbound secretory vesicle trafficking, indicating a potential role in virion egress. These observations are consistent with previous studies describing sequestration of signaling molecules, such as IL-6, and the synaptic vesicle-like properties of mature HCMV virions. Our analysis enabled development of a refined model incorporating old and new information related to the behavior of the ERC during HCMV replication. While limited by the paucity of integrated systems-level data, the model provides an informed basis for development of experimentally testable hypotheses related to mechanisms involved in HCMV virion maturation and egress. Information from such experiments will provide a robust roadmap for rational development of novel antivirals for HCMV and related viruses.

9.
J Virol ; 90(17): 7798-810, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27334581

ABSTRACT

UNLABELLED: Human cytomegalovirus (HCMV) is an enveloped double-stranded DNA virus that causes severe disease in newborns and immunocompromised patients. During infection, the host cell endosecretory system is remodeled to form the cytoplasmic virion assembly complex (cVAC). We and others previously identified the conserved, multifunctional HCMV virion tegument protein pUL103 as important for cVAC biogenesis and efficient secondary envelopment. To help define its mechanisms of action and predict additional functions, we used two complementary methods, coimmunoprecipitation (co-IP) and proximity biotinylation (BioID), to identify viral and cellular proteins that interact with pUL103. By using the two methods in parallel and applying stringent selection criteria, we identified potentially high-value interactions of pUL103 with 13 HCMV and 18 cellular proteins. Detection of the previously identified pUL103-pUL71 interaction, as well as verification of several interactions by reverse co-IP, supports the specificity of our screening process. As might be expected for a tegument protein, interactions were identified that suggest distinct roles for pUL103 across the arc of lytic infection, including interactions with proteins involved in cellular antiviral responses, nuclear activities, and biogenesis and transport of cytoplasmic vesicles. Further analysis of some of these interactions expands our understanding of the multifunctional repertoire of pUL103: we detected HCMV pUL103 in nuclei of infected cells and identified an ALIX-binding domain within the pUL103 sequence. IMPORTANCE: Human cytomegalovirus (HCMV) is able to reconfigure the host cell machinery to establish a virion production factory, the cytoplasmic virion assembly complex (cVAC). cVAC biogenesis and operation represent targets for development of novel HCMV antivirals. We previously showed that the HCMV tegument protein pUL103 is required for cVAC biogenesis. Using pUL103 as bait, we investigated viral and cellular protein-protein interactions to identify and understand the range of pUL103 functions. We found that pUL103 interacts with cellular antiviral defense systems and proteins involved in organelle biogenesis and transport of cytoplasmic vesicles and is present in infected cell nuclei. These results expand our understanding of the functional repertoire of pUL103 to include activities that extend from the earliest stages of infection through virion assembly and egress.


Subject(s)
Capsid Proteins/metabolism , Cytomegalovirus/physiology , Protein Interaction Mapping , Biotinylation , Cells, Cultured , Host-Pathogen Interactions , Humans , Immunoprecipitation
SELECTION OF CITATIONS
SEARCH DETAIL
...