Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 471: 115112, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871129

ABSTRACT

BACKGROUND: Medial temporal lobe atrophy has been linked to decline in neuropsychological measures of explicit memory function. While the hippocampus has long been identified as a critical structure in learning and memory processes, less is known about contributions of the amygdala to these functions. We sought to investigate the relationship between amygdala volume and memory functioning in a clinical sample of older adults with and without cognitive impairment. METHODS: A serial clinical sample of older adults that underwent neuropsychological assessment at an outpatient neurology clinic was selected for retrospective chart review. Patients were included in the study if they completed a comprehensive neuropsychological assessment within six months of a structural magnetic resonance imaging scan. Regional brain volumes were quantified using Neuroreader® software. Associations between bilateral hippocampal and amygdala volumes and memory scores, derived from immediate and delayed recall conditions of a verbal story learning task and a visual design reconstruction task, were examined using mixed-effects general linear models, controlling for total intracranial volume, scanner model, age, sex and education. Partial correlation coefficients, adjusted for these covariates, were calculated to estimate the strength of the association between volumes and memory scores. RESULTS: A total of 68 (39 F, 29 M) participants were included in the analyses, with a mean (SD) adjusted age of 80.1 (6.0) and educational level of 15.9 (2.5) years. Controlling for age, sex, education, and total intracranial volume, greater amygdala volumes were associated with better verbal and visual memory performance, with effect sizes comparable to hippocampal volume. No significant lateralized effects were observed. Partial correlation coefficients ranged from 0.47 to 0.33 (p<.001). CONCLUSION: These findings contribute to a growing body of knowledge identifying the amygdala as a target for further research in memory functioning. This highlights the importance of considering the broader functioning of the limbic system in which multiple subcortical structures contribute to memory processes and decline in older adults.

2.
Geriatrics (Basel) ; 9(2)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38525754

ABSTRACT

INTRODUCTION: Adopting healthy lifestyle behaviors has the potential to slow cognitive decline in older adults by reducing risks associated with dementia. Curriculum-based group health coaching may aid in establishing behavior change centered for dementia risk factors. METHODS: In this pilot clinical care patient group study (n = 6), we examined the effects of a six-month online Cognitive Health Program combined with a weekly telehealth support group led by the course creator, and personalized health optimization by a collaborating physician, in older adults with subjective cognitive decline. Cognition was assessed at baseline and post-intervention using a computerized battery. RESULTS: Cognitive changes were estimated with nonparametric tests and effect sizes (Cohen's d). Results showed significant improvements in global cognition (p < 0.03, d = 1.6), spatial planning (p < 0.01, d = 2.3), and visuospatial processing (p < 0.05, d = 1.1) compared to baseline. Participants reported high levels of satisfaction with the virtual group format and online curriculum. CONCLUSIONS: This small pilot study suggests that a virtual six-month personalized health coaching group with self-paced online health education is feasible and potentially efficacious for improving cognition in participants with subjective cognitive complaints. This format may facilitate behavior change to slow cognitive decline. Future studies should include a control group, a larger, more diverse sample as well as assessing mood and other subjective measures.

3.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Article in English | MEDLINE | ID: mdl-37742646

ABSTRACT

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Subject(s)
Alzheimer Disease , Insulins , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Magnetic Resonance Imaging , Positron-Emission Tomography , Amyloid , Amyloidogenic Proteins , Diet, Carbohydrate-Restricted , Carbohydrates , Atrophy/complications
4.
J Alzheimers Dis ; 91(3): 999-1006, 2023.
Article in English | MEDLINE | ID: mdl-36530088

ABSTRACT

BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS: We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Activities of Daily Living , Hand Strength , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Hippocampus
5.
J Alzheimers Dis ; 90(4): 1761-1769, 2022.
Article in English | MEDLINE | ID: mdl-36373320

ABSTRACT

BACKGROUND: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia in a scalable, accessible way is important to promote earlier detection and intervention. OBJECTIVE: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-related potential (qEEG/ERP)-based cognitive testing system (eVox® by Evoke Neuroscience) combined with an automated volumetric magnetic resonance imaging (vMRI) tool (Neuroreader® by Brainreader). METHODS: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia specialists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP (n = 161) and quantitative vMRI (n = 111) data were obtained. A multinomial logistic regression model was used to determine significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models. RESULTS: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors (AUC = 0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal lobe volume, were added to the model (AUC = 0.87). CONCLUSION: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD, MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase the diagnostic certainty of SCD, MCI, and dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Neuropsychological Tests , Magnetic Resonance Imaging , Evoked Potentials , Dementia/diagnostic imaging , Dementia/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...