Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Transfus Med Hemother ; 49(6): 338-345, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36654973

ABSTRACT

Introduction: Screening of hepatitis B surface antigen (HBsAg) and individual-donation nucleic acid amplification testing (ID-NAT) of blood donors have become standard to detect hepatitis B virus (HBV) infection. However, there is still a residual risk of HBV transmission by blood components of donors suffering from occult HBV infection (OBI). Therefore, many countries implemented universal testing of anti-HBV core antigen (anti-HBc) antibodies in order to increase blood safety. In Switzerland, anti-HBc testing is not part of the routine blood donor-screening repertoire. Therefore, we sought to assess prevalence of donors with OBI in a Swiss blood donor collective. Methods: Blood donations were prospectively investigated for the presence of anti-HBc antibodies during two time periods (I: all donors, March 2017; II: first-time donors only, April 2017 until February 2018). Anti-HBc-positive findings were confirmed by an anti-HBc neutralization test. Discarded plasma samples of anti-HBc-confirmed positive donors were ultracentrifuged and subsequently retested by regular HBV-ID-NAT to search for traces of HBV. Results: During time period I, 78 (1.6%) individuals out of 4,923 donors were confirmed anti-HBc-positive. Sixty-nine (88%) anti-HBc-positive samples were available and processed by ultracentrifugation followed by repeat HBV-ID-NAT. Four samples (5.8%) were found positive for HBV DNA. Sixty-five (94.2%) samples remained HBV NAT-negative upon ultracentrifugation. During time period II, 56 (0.9%) donor samples out of 6,509 exhibited anti-HBc-confirmed positive. Fifty-five (98%) samples could be reassessed by HBV-ID-NAT upon ultracentrifugation. Three (5.5%) samples contained HBV DNA and 52 (94.5%) samples remained HBV NAT-negative. Conclusion: Overall, we detected 7 viremic OBI carriers among 11,432 blood donors, which tested negative for HBV by standard HBV-ID-NAT and HBsAg screening. In contrast, OBI carriers showed positive anti-HBc findings which could be confirmed in 83.8% of the cases. Thus, OBI might be missed by the current HBV screening process of Swiss blood donors. We suggest to review current HBV screening algorithm. Extended donor screening by anti-HBc testing may unmask OBI carriers and contribute to blood safety for the recipient of blood products.

2.
Waste Manag Res ; 39(12): 1459-1470, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34407717

ABSTRACT

In recent years, complex new bottom ash treatment processes for enhanced metal recovery have been implemented in Switzerland, producing residual bottom ash fractions with various qualities. This study focusses on three different treatment processes by characterizing all arising fractions in detail. Thereby the factors influencing the composition of these fractions are identified and their recycling potential in Switzerland is investigated. However, high legislative requirements on total contents of heavy metals represent a high barrier for bottom ash recycling in Switzerland. Therefore, the recycling potential is further evaluated based on the waste legislation applied in the Netherlands, where recycling of bottom ash has a long tradition. There, threshold values for bottom ash recycling are based on leachate concentrations and not on total contents as in Switzerland. However, Swiss Waste Legislation also knows threshold values based on leachate concentrations for certain waste materials. The leaching tests applied in these two countries, however, are different. The comparison of both leaching tests reveals that the setup and conditions, especially the considered pH range, significantly influence the leaching of heavy metals. With emphasis on problematic pollutants, the possibilities for new applications of these fractions are evaluated based on Swiss and Dutch legal threshold values. The comparison within the legal frameworks of these two countries allows recognizing opportunities and risks related to bottom ash recycling.


Subject(s)
Environmental Pollutants , Metals, Heavy , Coal Ash/analysis , Environmental Pollutants/analysis , Incineration , Metals, Heavy/analysis , Recycling , Solid Waste/analysis
3.
Data Brief ; 32: 106261, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32984460

ABSTRACT

The dataset presented in this article is the supplementary data for the research article "Ten-years monitoring of MSWI bottom ashes with focus on TOC development and leaching behaviour" (https://doi.org/10.1016/j.wasman.2020.07.038) by Glauser et al. (2020) [1]. From 2008-2018 bottom ashes have been monitored in six MSWI plants in the Canton of Zürich with regular sampling campaigns and analysis of important species defined in the Swiss Waste Legislation [2]. Both the size of the dataset and the long period of consistent and representative monitoring are unique for Switzerland. Relevant aspects of the monitoring data are discussed and interpreted in the above mentioned research article and complemented by simple emission forecast modelling. While only selected species were discussed in the research article, this data article covers all the monitoring data. The focus of the monitoring was laid on carbon-species with the analysis of total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), degradable organic carbon (OC) and elemental carbon (EC). Total contents of nitrogen (N), sulphur (S), phosphorus (P), selected heavy metals (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) and loss on ignition (LOI) complete the solid chemical analysis. In addition, particulate ferrous (Fe) and non-ferrous (NF) metals and unburnt material were determined manually. Batch eluate tests according to Swiss Waste Legislation [3] were performed and analysed for dissolved organic carbon (DOC), ammonium (NH4 +), nitrite (NO2 -), fluoride (F-), sulphite (SO3 2-), sulphide (S2 -), chromate Cr(IV) and the heavy metals Cu (aq) and Zn (aq) and Cr(IV). In addition, data on the biochemical oxygen demand (BOD) and the physical parameters pH and electrical conductivity complete the eluate analysis.

4.
Waste Manag ; 117: 104-113, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32829004

ABSTRACT

In Switzerland MSWI bottom ash has to comply with the legal threshold value for TOC of < 2 wt-% in order to be landfilled. However, TOC contents of this magnitude lead to elevated DOC emissions and associated emissions of ammonium and Cu (aq). Since 2008 the Canton of Zürich therefore pursues a strategy to lower TOC contents in bottom ash by 2020 to 0.5 wt-%. To observe the development of TOC and other constituents, bottom ash has been monitored from 2008 to 2018. Monitoring results indicate that TOC contents < 0.5 wt-% in bottom ash lead to DOC eluate concentrations < 20 mg/l. DOC concentrations of this magnitude are close to Swiss legal criteria for discharge of landfill leachate into surface waters (10 mg/l). The emission results have been obtained by batch eluate tests according to Swiss Waste Legislation. Such laboratory tests only partially simulate real conditions occurring on landfills. To approximate landfill conditions, column tests with recent bottom ashes combined with tests on simple emission forecasting complete the study. The comparison of results from batch and column tests shows similar cumulative concentrations, indicating that batch tests are suitable to evaluate bottom ash quality. The tested modelling approach, based on constant conditions and exponential decrease in concentration, proved adequate to simulate column progressions. The modelled emission forecasts for DOC lies within 33% of column test results. Further, the model demonstrates the differences in flow regime between eluate tests and landfills and promotes better understanding of temporal aspects and the influence of landfill relevant parameters on pollutant mobilisation.


Subject(s)
Coal Ash/analysis , Environmental Pollutants , Incineration , Switzerland , Waste Disposal Facilities
5.
Transfusion ; 42(5): 527-36, 2002 May.
Article in English | MEDLINE | ID: mdl-12084160

ABSTRACT

BACKGROUND: The FDA requirement for sensitivity of viral NAT methods used in blood screening is a 95-percent detection limit of 100 copies per mL, whereas the NAT screening system should have a sensitivity of at least 5000 copies per mL per individual donation. According to the Common Technical Specifications of the European Directive 98/79/EC for in vitro diagnostics, viral standard dilutions (calibrated against the WHO standard) should be tested at least 24 times for a statistically valid assessment of the 95-percent detection limit. STUDY DESIGN AND METHODS: Viral standard dilution panels (PeliCheck, VQC-CLB) were prepared for HCV RNA genotypes 1 and 3 and for HIV RNA genotypes B and E. In a multicenter study, 23 laboratories tested the panels all together in 8 to 91 test runs per NAT method. RESULTS: The following 95-percent detection limits (and 95% CIs) were found on the HCV RNA genotype 1 reference panels (shown as geq/mL): Gen-Probe TMA, 85 (64-118); AmpliScreen, 126 (83-225); AmpliScreen with NucliSens Extractor, 21 (13-44); Amplicor with NucliSens Extractor, 69 (50-102), and Amplicor with Qiagen extraction technology, 144 (74-102). On HIV RNA genotype B dilution panels, the following 95-percent detection limits were found (shown as geq/mL): Gen-Probe TMA, 31 (20-52); AmpliScreen, 126 (67-311); AmpliScreen with NucliSens Extractor, 37 (23-69), and NucliSens QL assay, 123 (51-566). HIV RNA genotype E panels were detected with equal sensitivity as HIV RNA genotype B panels. In the Gen-Probe TMA assay, the 50-percent detection limits on HIV RNA type B and type E were 3.6 (2.6-5.0) and 3.9 (2.4-5.8) geq per mL, respectively. The HCV RNA genotype 1 and 3 standards were detected with equal sensitivity. CONCLUSION: The differences in sensitivity between NAT assays can be explained by the input of isolated viral nucleic acid in the amplification reactions. The FDA requirements for sensitivity of NAT blood screening assays can be met by the Gen-probe TMA, as well as by the AmpliScreen assays, particularly when combined with the NucliSens Extractor.


Subject(s)
Blood Transfusion/standards , HIV/isolation & purification , Hepacivirus/isolation & purification , Nucleic Acid Amplification Techniques , RNA, Viral/blood , Reagent Kits, Diagnostic/standards , Viremia/diagnosis , Adsorption , Australia , Automation , Europe , Genotype , HIV/genetics , Hepacivirus/genetics , Humans , Magnetics , RNA, Viral/isolation & purification , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Silicon Dioxide , Transcription, Genetic , Ultracentrifugation , United States , United States Food and Drug Administration , Viremia/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...