Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 6(7): 1325-35, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22237542

ABSTRACT

The type III secretion system (T3SS) is an important virulence factor of pathogenic bacteria, but the natural occurrence of variants of bacterial plant pathogens with deficiencies in their T3SS raises questions about the significance of the T3SS for fitness. Previous work on T3SS-deficient plant pathogenic bacteria has focused on strains from plants or plant debris. Here we have characterized T3SS-deficient strains of Pseudomonas syringae from plant and nonplant substrates in pristine nonagricultural contexts, many of which represent recently described clades not yet found associated with crop plants. Strains incapable of inducing a hypersensitive reaction (HR(-)) in tobacco were detected in 65% of 126 samples from headwaters of rivers (mountain creeks and lakes), snowpack, epilithic biofilms, wild plants and leaf litter and constituted 2 to 100% of the P. syringae population associated with each sample. All HR(-) strains lacked at least one gene in the canonical hrp/hrc locus or the associated conserved effector locus, but most lacked all six of the genes tested (hrcC, hrpL, hrpK1, avrE1 and hrpW1) and represented several disparate phylogenetic clades. Although most HR(-) strains were incapable of causing symptoms on cantaloupe seedlings as expected, strains in the recently described TA-002 clade caused severe symptoms in spite of the absence of any of the six conserved genes of the canonical T3SS according to PCR and Southern blot assays. The phylogenetic context of the T3SS variants we observed provides insight into the evolutionary history of P. syringae as a pathogen and as an environmental saprophyte.


Subject(s)
Bacterial Secretion Systems , Environmental Microbiology , Plants/microbiology , Pseudomonas syringae/classification , Pseudomonas syringae/isolation & purification , Bacterial Proteins/genetics , Ecosystem , Mutation , Phylogeny , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Virulence Factors/genetics
2.
Environ Microbiol ; 14(8): 2099-112, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22188069

ABSTRACT

The recently discovered ubiquity of the plant pathogen Pseudomonas syringae in headwaters and alpine ecosystems worldwide elicits new questions about the ecology of this bacterium and subsequent consequences for disease epidemiology. Because of the major contribution of snow to river run-off during crop growth, we evaluated the population dynamics of P.syringae in snowpack and the underlying leaf litter during two years in the Southern French Alps. High population densities of P.syringae were found on alpine grasses, and leaf litter was identified as the main source of populations of P.syringae in snowpack, contributing more than the populations arriving with the snowfall. The insulating properties of snow foster survival of P.syringae throughout the winter in the 10 cm layer of snow closest to the soil. Litter and snowpack harboured populations of P.syringae that were very diverse in terms of phenotypes and genotypes. Neither substrate nor sampling site had a marked effect on the structure of P.syringae populations, and snow and litter had genotypes in common with other non-agricultural habitats and with crops. These results contribute to the mounting evidence that a highly diverse P.syringae metapopulation is disseminated throughout drainage basins between cultivated and non-cultivated zones.


Subject(s)
Plant Leaves/microbiology , Plants/microbiology , Pseudomonas syringae/physiology , Snow/microbiology , Crops, Agricultural/microbiology , Ecosystem , France , Genetic Variation , Metagenome/physiology , Phenotype , Population Dynamics , Pseudomonas syringae/genetics , Rivers/microbiology , Seasons
3.
ISME J ; 2(3): 321-34, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18185595

ABSTRACT

Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.


Subject(s)
Plant Diseases/microbiology , Pseudomonas syringae/growth & development , Rain/microbiology , Rivers/microbiology , Snow/microbiology , Bacterial Proteins/genetics , Beta vulgaris/microbiology , Cucumis/microbiology , Ecosystem , Genotype , Ice , Lactuca/microbiology , Phylogeny , Pseudomonas syringae/classification , Pseudomonas syringae/genetics , Pseudomonas syringae/isolation & purification , Nicotiana/microbiology
4.
FEMS Microbiol Ecol ; 54(2): 287-95, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16332327

ABSTRACT

The survival and transfer of Listeria innocua and Clostridium sporogenes, used as surrogates of the food borne pathogens Listeria monocytogenes and Clostridium botulinum, were quantitatively assessed under field conditions. In the soil, spores of C. sporogenes declined by less than 0.7 log cycles within 16 months and were detected on parsley leaves throughout the experiment. In contrast, L. innocua in the soil declined by 7 log cycles in 90 days and was detected on leaves in low numbers (>0.04 MPN g(-1)) during the first 30 days. Rates of decline in soil were similar in the laboratory at 20 degrees C for two strains of L. innocua and L. monocytogenes ; and in the field for L. innocua over two different years. L. innocua survived better in winter, indicating an important influence of temperature. The major cause of transfer of L. innocua from soil to parsley leaves was splashing due to rain and irrigation. As few as 1 CFU g(-1) Listeria in soil led to contamination of parsley leaves. Internalisation of Listeria through parsley roots was not observed. Under the conditions of soil and climate studied, a delay of 90 days between application of potentially contaminated fertilizer and harvest should be sufficient to eliminate L. monocytogenes.


Subject(s)
Clostridium/growth & development , Crops, Agricultural/microbiology , Fertilizers , Listeria/growth & development , Manure/microbiology , Petroselinum/microbiology , Sewage/microbiology , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...