Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(25): 255502, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29303330

ABSTRACT

Picosecond duration compressive and shear phonon wave packets injected into (311) GaAs slabs transform after propagation through ∼1 mm into chirped acoustic pulses with a frequency increasing in time due to phonon dispersion. By probing the temporal optical response to coherent phonons in a near surface layer of the GaAs slab, we show that phonon chirping opens a transformational route for high-sensitivity terahertz and subterahertz phonon spectroscopy. Temporal gating of the chirped phonon pulse allows the selection of a narrow band phonon spectrum with a central frequency up to 0.4 THz for longitudinal and 0.2 THz for transverse phonons.

2.
Nat Commun ; 5: 4038, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008784

ABSTRACT

Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator's optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations--photons, phonons and electrons--can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge.

3.
Phys Rev Lett ; 106(6): 066602, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405483

ABSTRACT

Picosecond acoustic pulses generated by femtosecond laser excitation of a metal film induce a transient current with subnanosecond rise time in a GaAs/Au Schottky diode. The signal consists of components due to the strain pulse crossing the edge of the depletion layer in the GaAs and also the GaAs/Au interface. A theoretical model is presented for the former and is shown to be in very good agreement with the experiment.


Subject(s)
Arsenicals/chemistry , Electric Conductivity , Gallium/chemistry , Electrodes , Gold/chemistry , Semiconductors , Time Factors
4.
Phys Rev Lett ; 96(21): 215504, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16803248

ABSTRACT

We report measurements of acoustic phonon emission from a weakly coupled AlAs/GaAs superlattice (SL) under vertical electron transport. The phonons were detected using superconducting bolometers. A peak (resonance) was observed in emission parallel to the SL growth axis when the electrical energy drop per SL period matched the energy of the first SL mini-Brillouin zone-center phonon mode. This peak was mirrored by an increase of the differential conductance of the SL. These results are evidence for stimulated emission of terahertz phonons as previously predicted theoretically and suggest that such a SL may form the basis of a SASER (sound amplification by stimulated emission of radiation) device.

5.
Phys Rev Lett ; 86(19): 4318-21, 2001 May 07.
Article in English | MEDLINE | ID: mdl-11328164

ABSTRACT

A new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only "acoustic" phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to the appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the T(1/2) temperature dependence of the wire thermal conductance. Experimental situations where the new regime is likely to be detected are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...