Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1867(9): 130398, 2023 09.
Article in English | MEDLINE | ID: mdl-37301332

ABSTRACT

BACKGROUND: Targeted protein degradation relies on inducing proximity between an E3 ubiquitin ligase and a target protein, and subsequent proteasomal degradation of the latter. Biophysical methods allow the measurement of the ternary complex formation by recombinant target and E3 ligase proteins in the presence of molecular glues and bifunctional degraders. The development of new chemotypes of degraders mediating ternary complex formation of unknown dimensions and geometries requires the use of different biophysical approaches. METHODS: The TR-FRET and AlphaLISA platforms have been applied to study molecular glues and bifunctional degraders. The performance of the label-based proximity assays was compared with the BLI method, which is a label-free, sensor-based approach. RESULTS: We present and compare two commonly used assays to monitor proximity induction, AlphaLISA and TR-FRET. The LinkScape system consisting of the CaptorBait peptide and the CaptorPrey protein is a novel method of protein labeling compatible with TR-FRET assay. CONCLUSIONS: The TR-FRET and AlphaLISA proximity assays enable detection of ternary complexes formed between an E3 Ligase, a target protein and a small molecule degrader. Experiments with different chemotypes of GSPT1 degraders showed that ALphaLISA was more susceptible to chemotype-dependent interference than TR-FRET assay. GENERAL SIGNIFICANCE: The discovery and optimization of small-molecule inducers of ternary complexes is greatly accelerated by using biophysical assays. The LinkScape-based TR-FRET assay is an alternative to antibody-based proximity assays due to the CaptorPrey's subnanomolar affinity to the CaptorBait-tagged protein target, and the 10-fold lower molecular weight of the CaptorPrey protein compared to the antibody.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteins/chemistry , Proteolysis , Ubiquitin-Protein Ligases/metabolism
2.
Sci Adv ; 8(43): eabq0952, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306358

ABSTRACT

The Na-K-2Cl cotransporter-1 (NKCC1) is an electroneutral Na+-dependent transporter responsible for simultaneously translocating Na+, K+, and Cl- ions into cells. In human tissue, NKCC1 plays a critical role in regulating cytoplasmic volume, fluid intake, chloride homeostasis, and cell polarity. Here, we report four structures of human NKCC1 (hNKCC1), both in the absence and presence of loop diuretic (bumetanide or furosemide), using single-particle cryo-electron microscopy. These structures allow us to directly observe various novel conformations of the hNKCC1 dimer. They also reveal two drug-binding sites located at the transmembrane and cytosolic carboxyl-terminal domains, respectively. Together, our findings enable us to delineate an inhibition mechanism that involves a coupled movement between the cytosolic and transmembrane domains of hNKCC1.

3.
mBio ; 12(2)2021 04 05.
Article in English | MEDLINE | ID: mdl-33820823

ABSTRACT

Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Ion Transport , Membrane Transport Proteins/chemistry , Metals, Heavy/metabolism , Binding Sites , Biological Transport , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Molecular Dynamics Simulation , Protein Binding , Silver/metabolism
4.
mBio ; 12(1)2021 02 23.
Article in English | MEDLINE | ID: mdl-33622726

ABSTRACT

Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most highly antibiotic-resistant bacteria worldwide. Multidrug efflux within these highly drug-resistant strains and other opportunistic pathogens is a major cause of failure of drug-based treatments of infectious diseases. The best-characterized multidrug efflux system in A. baumannii is the prevalent Acinetobacterdrug efflux B (AdeB) pump, which is a member of the resistance-nodulation-cell division (RND) superfamily. Here, we report six structures of the trimeric AdeB multidrug efflux pump in the presence of ethidium bromide using single-particle cryoelectron microscopy (cryo-EM). These structures allow us to directly observe various novel conformational states of the AdeB trimer, including the transmembrane region of trimeric AdeB can be associated with form a trimer assembly or dissociated into "dimer plus monomer" and "monomer plus monomer plus monomer" configurations. We also discover that a single AdeB protomer can simultaneously anchor a number of ethidium ligands and that different AdeB protomers can bind ethidium molecules simultaneously. Combined with molecular dynamics (MD) simulations, we reveal a drug transport mechanism that involves multiple multidrug-binding sites and various transient states of the AdeB membrane protein. Our data suggest that each AdeB protomer within the trimer binds and exports drugs independently.IMPORTANCEAcinetobacter baumannii has emerged as one of the most highly antibiotic-resistant Gram-negative pathogens. The prevalent AdeB multidrug efflux pump mediates resistance to a broad spectrum of clinically relevant antimicrobial agents. Here, we report six cryo-EM structures of the trimeric AdeB pump in the presence of ethidium bromide. We discover that a single AdeB protomer can simultaneously anchor a number of ligands, and different AdeB protomers can bind ethidium molecules simultaneously. The results indicate that each AdeB protomer within the trimer recognizes and extrudes drugs independently.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Drug Resistance, Multiple, Bacterial/genetics , Membrane Transport Proteins/chemistry , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/ultrastructure , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/ultrastructure , Cell Division/drug effects , Ethidium/pharmacology , Membrane Transport Proteins/ultrastructure
5.
J Biol Chem ; 296: 100079, 2021.
Article in English | MEDLINE | ID: mdl-33187983

ABSTRACT

The ClpB-DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 µM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 µM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 µM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB-DnaK bichaperone system in vitro with an IC50∼5 µM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK.


Subject(s)
Drug Repositioning/methods , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli/physiology , Microbial Viability , Adenosine Triphosphatases/metabolism , Blotting, Western , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fluorescence Polarization , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Microscopy, Confocal , Surface Plasmon Resonance
6.
PLoS One ; 15(6): e0234468, 2020.
Article in English | MEDLINE | ID: mdl-32530958

ABSTRACT

Flavonoids are plant-derived compounds that occur abundantly in fruits and vegetables and have been shown to possess potent anti-cancer, antioxidant, and anti-inflammatory properties. However, their direct targets and molecular mechanism of action are not well characterized, hampering exploitation of the beneficial properties of flavonoids for drug development. Small ubiquitin-related modifier 1 (SUMO1) is attached to target proteins as part of a post-translational modification system implicated in a myriad of cellular processes from nuclear trafficking to transcriptional regulation. Using a combination of surface plasmon resonance, differential scanning fluorimetry and fluorescence quenching studies, we provide evidence for direct binding of the dietary flavonoid fisetin to human SUMO1. Our NMR chemical shift perturbation analyses reveal that binding to fisetin involves four conserved amino acid residues (L65, F66, E67, M82) previously shown to be important for conjugation of SUMO1 to target proteins. In vitro sumoylation experiments indicate that fisetin blocks sumoylation of tumor suppressor p53, consistent with fisetin negatively affecting post-translational modification and thus the biological activity of p53. A series of differential scanning fluorimetry experiments suggest that high concentrations of fisetin result in destabilization and unfolding of SUMO1, presenting a molecular mechanism by which flavonoid binding affects its activity. Overall, our data establish a novel direct interaction between fisetin and SUMO1, providing a mechanistic explanation for the ability of fisetin to modulate multiple key signaling pathways inside cells.


Subject(s)
Flavonoids/metabolism , Flavonoids/pharmacology , SUMO-1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Diet , Flavonols , Humans , Protein Binding , Saccharomyces cerevisiae , Sumoylation/drug effects
7.
Arch Biochem Biophys ; 655: 12-17, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30092228

ABSTRACT

A molecular chaperone ClpB disaggregates and reactivates aggregated proteins in cooperation with DnaK, DnaJ, and GrpE. Within a cellular environment, ClpB must distinguish between properly folded and aggregated proteins by recognizing specific physical and/or chemical surface properties of the aggregates. However, the molecular mechanism of substrate binding to ClpB is poorly understood. We hypothesized that ClpB recognizes those polypeptide segments that promote protein aggregation because they are likely present at the surface of growing aggregates. We used an algorithm TANGO (Fernandez-Escamilla et al., Nat. Biotech. 2004, 22, 1302) to predict the aggregation-prone segments within the model ClpB-binding peptides and investigated interactions of the FITC-labeled peptides with ClpB using fluorescence anisotropy. We found that ClpB binds the substrate-mimicking peptides with positive cooperativity, which is consistent with an allosteric linkage between substrate binding and ClpB oligomerization. The apparent affinity towards ClpB for peptides displaying different predicted aggregation propensities correlates with the peptide length. However, discrete aggregation-prone segments within the peptides are neither sufficient nor necessary for efficient interaction with ClpB. Our results suggest that the substrate recognition mechanism of ClpB may rely on global surface properties of aggregated proteins rather than on local sequence motifs.


Subject(s)
Endopeptidase Clp/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Heat-Shock Proteins/metabolism , Peptides/metabolism , Algorithms , Amino Acid Sequence , Peptides/chemistry , Protein Binding , Protein Multimerization
8.
J Proteomics ; 177: 88-111, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29477555

ABSTRACT

The human HtrA3 protease is involved in placentation, mitochondrial homeostasis, stimulation of apoptosis and proposed to be a tumor suppressor. Molecular mechanisms of the HtrA3 functions are poorly understood and knowledge concerning its cellular targets is very limited. There are two HtrA3 isoforms, the long (HtrA3L) and short (HtrA3S). Upon stress, their N-terminal domains are removed, resulting in the more active ΔN-HtrA3. By pull down and mass spectrometry techniques, we identified a panel of putative ΔN-HtrA3L/S substrates. We confirmed that ΔN-HtrA3L/S formed complexes with actin, ß-tubulin, vimentin and TCP1α in vitro and in a cell and partially co-localized with the actin and vimentin filaments, microtubules and TCP1α in a cell. In vitro, both isoforms cleaved the cytoskeleton proteins, promoted tubulin polymerization and displayed chaperone-like activity, with ΔN-HtrA3S being more efficient in proteolysis and ΔN-HtrA3L - in polymerization. TCP1α, essential for the actin and tubulin folding, was directly bound by the ΔN-HtrA3L/S but not cleaved. These results indicate that actin, ß-tubulin, vimentin, and TCP1α are HtrA3 cellular partners and suggest that HtrA3 may influence cytoskeleton dynamics. They also suggest different roles of the HtrA3 isoforms and a possibility that HtrA3 protease may also function as a co-chaperone. SIGNIFICANCE: The HtrA3 protease stimulates apoptosis and is proposed to be a tumor suppressor and a therapeutic target, however little is known about its function at the molecular level and very few HtrA3 physiological substrates have been identified so far. Furthermore, HtrA3 is the only member of the HtrA family of proteins which, apart from the long isoform possessing the PD and PDZ domains (HtrA3L), has a short isoform (HtrA3S) lacking the PDZ domain. In this work we identified a large panel (about 150) of the tentative HtrA3L/S cellular partners which provides a good basis for further research concerning the HtrA3 function. We have shown that the cytoskeleton proteins actin, ß-tubulin and vimentin, and the TCP1α chaperonin are cellular partners of both HtrA3 isoforms. Our findings indicate that HtrA3 may promote destabilization of the actin and vimentin cytoskeleton and suggest that it may influence the dynamics of the microtubule network, with the HtrA3S being more efficient in cytoskeleton protein cleavage and HtrA3L - in tubulin polymerization. Also, we have shown for the first time that HtrA3 has a chaperone-like, holdase activity in vitro - activity typical for co-chaperone proteins. The proposed HtrA3 influence on the cytoskeleton dynamics may be one of the ways in which HtrA3 promotes cell death and affects cancerogenesis. We believe that the results of this study provide a new insight into the role of HtrA3 in a cell and further confirm the notion that HtrA3 should be considered as a target of new anti-cancer therapies.


Subject(s)
Chaperonin Containing TCP-1/metabolism , Chaperonins/metabolism , Cytoskeletal Proteins/metabolism , Serine Endopeptidases/physiology , Actins/metabolism , Humans , Protein Isoforms , Serine Endopeptidases/metabolism , Substrate Specificity , Tubulin/metabolism , Vimentin/metabolism
9.
ACS Comb Sci ; 19(9): 565-573, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28741928

ABSTRACT

Herein, we report selection, synthesis, and enzymatic evaluation of a peptidomimetic library able to increase proteolytic activity of HtrA3 (high temperature requirement A) protease. Iterative deconvolution in solution of synthesized modified pentapeptides yielded two potent HtrA3 activators acting in the micromolar range (HCOO-CH2O-C6H4-OCH2-CO-Tyr-Asn-Phe-His-Asn-OH and HCOO-CH2O-C6H4-OCH2-CO-Tyr-Asn-Phe-His-Glu-OH). Both compounds increased proteolysis of an artificial HtrA3 substrate over 40-fold in a selective manner. On the basis of molecular modeling, the selected compounds bind strongly to the PDZ domain.


Subject(s)
Enzyme Activators/chemical synthesis , Oligopeptides/chemical synthesis , Peptidomimetics/chemical synthesis , Serine Endopeptidases/chemistry , Amino Acid Sequence , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Combinatorial Chemistry Techniques , Enzyme Activators/chemistry , Humans , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/pharmacology , PDZ Domains , Peptide Library , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Protein Binding , Protein Conformation , Substrate Specificity
10.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1141-1151, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28642151

ABSTRACT

Human HtrA3 protease is a proapoptotic protein, involved in embryo implantation and oncogenesis. In stress conditions the protease is activated by removal of its N-terminal domain. The activated form, ΔN-HtrA3L is a homotrimer composed of the protease (PD) and PDZ domains. The LB structural loop of the PD is longer by six amino acid residues than its counterparts of other human HtrA proteins and interacts with the PDZ in a way not observed in other known HtrA structures. By size exclusion chromatography of the ΔN-HtrA3L mutated variants we found that removal of the additional LB loop residues caused a complete loss of the proper trimeric structure while impairing their interactions with the PDZ domain decreased the amount of the trimers. This indicates that the LB loop participates in stabilization of the ΔN-HtrA3L oligomer structure and suggests involvement of the LB-PDZ interactions in the stabilization. Removal of the additional LB loop residues impaired the ΔN-HtrA3L activity against the peptide and protein substrates, including the antiapoptotic XIAP protein, while a decrease in the LB-PDZ interaction caused a diminished efficiency of the peptide cleavage. These results indicate that the additional LB residues are important for the ΔN-HtrA3L proteolytic activity. Furthermore, a monomeric form of the ΔN-HtrA3L is proteolytically inactive. In conclusion, our results suggest that the expanded LB loop promotes the ΔN-HtrA3L activity by stabilizing the protease native trimeric structure.


Subject(s)
Serine Endopeptidases/chemistry , A549 Cells , Chromatography, Gel , Humans , Mutagenesis, Site-Directed , Mutation , Neoplasm Proteins/metabolism , PDZ Domains , Peptides/metabolism , Protein Conformation , Protein Multimerization , Protein Stability , Recombinant Proteins/metabolism , Sequence Deletion , Serine Endopeptidases/metabolism , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/metabolism
11.
Arch Biochem Biophys ; 621: 6-23, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28396256

ABSTRACT

Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.


Subject(s)
Apoptosis/physiology , Mitochondria/physiology , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Signal Transduction/physiology , Binding Sites , Enzyme Activation , Humans , PDZ Domains/physiology , Protein Binding , Protein Conformation , Serine Endopeptidases/ultrastructure , Structure-Activity Relationship
12.
Biochim Biophys Acta ; 1864(3): 283-296, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26702898

ABSTRACT

HtrA2(Omi) protease is involved in the maintenance of mitochondrial homeostasis and stimulation of apoptosis as well as in development of cancer and neurodegenerative disorders. The protein is a homotrimer whose subunits comprise serine protease domain (PD) and PDZ regulatory domain. In the basal, inactive state, a tight interdomain interface limits access both to the PDZ peptide (carboxylate) binding site and to the PD catalytic center. The molecular mechanism of activation is not well understood. To further the knowledge of HtrA2 thermal activation we monitored the dynamics of the PDZ-PD interactions during temperature increase using tryptophan-induced quenching (TrIQ) method. The TrIQ results suggested that during activation the PDZ domain changed its position versus PD inside a subunit, including a prominent change affecting the L3 regulatory loop of PD, and also changed its interactions with the PD of the adjacent subunit (PD*), specifically with its L1* regulatory loop containing the active site serine. The α5 helix of PDZ was involved in both, the intra- and intersubunit changes of interactions and thus seems to play an important role in HtrA2 activation. The amino acid substitutions designed to decrease the PDZ interactions with the PD or PD* promoted protease activity at a wide range of temperatures, which supports the conclusions based on the TrIQ analysis. The model presented in this work describes PDZ movement in relation to PD and PD*, resulting in an increased access to the peptide binding and active sites, and conformational changes of the L3 and L1* loops.


Subject(s)
Allosteric Regulation , Mitochondria/chemistry , Mitochondrial Proteins/chemistry , Peptides/chemistry , Serine Endopeptidases/chemistry , Binding Sites , Catalytic Domain , High-Temperature Requirement A Serine Peptidase 2 , Humans , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , PDZ Domains , Protein Binding , Protein Structure, Secondary , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Tryptophan/chemistry
13.
PLoS One ; 10(6): e0131142, 2015.
Article in English | MEDLINE | ID: mdl-26110759

ABSTRACT

Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.


Subject(s)
PDZ Domains/physiology , Serine Endopeptidases/chemistry , Serine Endopeptidases/physiology , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , PDZ Domains/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/physiology , Serine Endopeptidases/genetics , Structure-Activity Relationship
14.
Cell Stress Chaperones ; 18(1): 35-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22851136

ABSTRACT

HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.


Subject(s)
Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Temperature , Amino Acid Substitution , Circular Dichroism , High-Temperature Requirement A Serine Peptidase 2 , Humans , Kinetics , Light , Mitochondrial Proteins/genetics , Models, Molecular , PDZ Domains , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Scattering, Radiation , Serine Endopeptidases/genetics , Spectrometry, Fluorescence , Tryptophan/metabolism , Water/chemistry
15.
Curr Pharm Des ; 19(6): 977-1009, 2013.
Article in English | MEDLINE | ID: mdl-23016688

ABSTRACT

The HtrA proteases degrade damaged proteins and thus control the quality of proteins and protect cells against the consequences of various stresses; they also recognize specific protein substrates and in this way participate in regulation of many pathways. In many pathogenic bacteria strains lacking the HtrA function lose virulence or their virulence is decreased. This is due to an increased vulnerability of bacteria to stresses or to a decrease in secretion of virulence factors. In some cases HtrA is secreted outside the cell, where it promotes the pathogen's invasiveness. Thus, the HtrA proteases of bacterial pathogens are attractive targets for new therapeutic approaches aimed at inhibiting their proteolytic activity. The exported HtrAs are considered as especially promising targets for chemical inhibitors. In this review, we characterize the model prokaryotic HtrAs and HtrAs of pathogenic bacteria, focusing on their role in virulence. In humans HtrA1, HtrA2(Omi) and HtrA3 are best characterized. We describe their role in promoting cell death in stress conditions and present evidence indicating that HtrA1 and HtrA2 function as tumor suppressors, while HtrA2 stimulates cancer cell death induced by chemotherapeutic agents. We characterize the HtrA2 involvement in pathogenesis of Parkinson's and Alzheimer's diseases, and briefly describe the involvement of human HtrAs in other diseases. We hypothesize that stimulation of the HtrA's proteolytic activity might be beneficial in therapies of cancer and neurodegenerative disorders, and discuss the possibilities of modulating HtrA proteolytic activity considering the present knowledge about their structure and regulation.


Subject(s)
Alzheimer Disease/drug therapy , Mitochondrial Proteins/antagonists & inhibitors , Parkinson Disease/drug therapy , Protease Inhibitors/therapeutic use , Serine Endopeptidases/chemistry , Alzheimer Disease/enzymology , Animals , High-Temperature Requirement A Serine Peptidase 2 , Humans , Mitochondrial Proteins/metabolism , Parkinson Disease/enzymology , Proteolysis , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...