Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 55(12): 6169-77, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27229299

ABSTRACT

We synthesize PbMn7O12 perovskite under high-pressure (6 GPa) and high-temperature (1373 K) conditions and investigate its structural, magnetic, dielectric, and ferroelectric properties. We find that PbMn7O12 exhibits rich physical properties from interplay among charge, orbital, and spin degrees of freedom and rich structural properties. PbMn7O12 crystallizes in space group R3̅ near room temperature and shows a structural phase transition at TCO = 397 K to a cubic structure in space group Im3̅; the Im3̅-to-R3̅ transition is associated with charge ordering. Below TOO = 294 K, a structural modulation transition associated with orbital ordering takes place. There are two magnetic transitions with Néel temperatures of TN1 = 83 K and TN2 = 77 K and probably a lock-in transition at TN3 = 43 K (on cooling). There is huge hysteresis on specific heat (between ∼37 and 65 K at 0 Oe), dielectric constant (between ∼20 and 70 K at 0 Oe), and dc and ac magnetic susceptibilities around the lock-in transition. Sharp dielectric constant, dielectric loss, and pyroelectric current anomalies are observed at TN2, indicating that electric polarization is developed at this magnetic transition, and PbMn7O12 perovskite is a spin-driven multiferroic. Polarization of PbMn7O12 is measured to be ∼4 µC/m(2). Field-induced transitions are detected at ∼63 and ∼170 kOe at 1.6-2 K; similar high-magnetic field properties are also found for CdMn7O12, CaMn7O12, and SrMn7O12. PbMn7O12 exhibits a quite small magnetodielectric effect, reaching approximately -1.3 to -1.7% at 10 K and 90 kOe.

2.
Inorg Chem ; 54(18): 9081-91, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26322969

ABSTRACT

We synthesize CdMn7O12 and SrMn7-xFexO12 (x = 0, 0.08, and 0.5) perovskites under high pressure (6 GPa) and high temperature (1373-1573 K) conditions and investigate their structural, magnetic, dielectric, and ferroelectric properties. CdMn7O12 and SrMn7O12 are isostructural with CaMn7O12: space group R3̅ (No. 148), Z = 3, and lattice parameters a = 10.45508(2) Å and c = 6.33131(1) Å for CdMn7O12 and a = 10.49807(1) Å and c = 6.37985(1) Å for SrMn7O12 at 295 K. There is a structural phase transition at 493 K in CdMn7O12 and at 404 K in SrMn7O12 to a cubic structure (space group Im3̅), associated with charge ordering as found by the structural analysis and Mössbauer spectroscopy. SrMn6.5Fe0.5O12 crystallizes in space group Im3̅ at 295 K with a = 7.40766(2) Å and exhibits spin-glass magnetic properties below 34 K. There are two magnetic transitions in CdMn7O12 with the Néel temperatures TN2 = 33 K and TN1 = 88 K, and in SrMn7O12 with TN2 = 63 K and TN1 = 87 K. A field-induced transition is found in CdMn7O12 from about 65 kOe, and TN2 = 58 K at 90 kOe. No dielectric anomalies are found at TN1 and TN2 at 0 Oe in both compound, but CdMn7O12 exhibits small anomalies at TN1 and TN2 at 90 kOe. In pyroelectric current measurements, we observe large and broad peaks around magnetic phase transition temperatures in CdMn7O12, SrMn7O12, and SrMn6.5Fe0.5O12; we assign those peaks to extrinsic effects and compare our results with previously reported results on CaMn7O12. We also discuss general tendencies of the AMn7O12 perovskite family (A = Cd, Ca, Sr, and Pb).

3.
Dalton Trans ; 44(23): 10785-94, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25730286

ABSTRACT

TlMO(3) perovskites (M(3+) = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl(3+)-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO(3) investigated by Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO(3) perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of TlCrO(3) is refined using synchrotron X-ray powder diffraction data: space group Pnma (no. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO(3) crystallizes in the GdFeO(3)-type structure similar to other members of the perovskite chromite family, ACrO(3) (A(3+) = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO(3) are close to those of DyCrO(3); however, the Néel temperature of TlCrO(3) (TN≈ 89 K) is much smaller than that of DyCrO(3) and close to that of InCrO(3). Isothermal magnetization studies show that TlCrO(3) is a fully compensated antiferromagnet similar to ScCrO(3) and InCrO(3), but different from RCrO(3) (R(3+) = Y and La-Lu). Ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at T(N2) = 87.0 K and T(N1) = 89.3 K. Magnetic anomalies near T(N2 )are suppressed by static magnetic fields and by 5% iron doping.

4.
Sci Technol Adv Mater ; 16(2): 024801, 2015 Apr.
Article in English | MEDLINE | ID: mdl-27877762

ABSTRACT

We synthesize ScCoO3 perovskite and its solid solutions, ScCo1-x Fe x O3 and ScCo1-x Cr x O3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1-xMx )MO3 with x = 0.05-0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1-xMx )MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.

5.
Inorg Chem ; 53(18): 9800-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25163034

ABSTRACT

We synthesize a new member of the AMnO3 perovskite manganite family (where A is a trivalent cation)--thallium manganite, TlMnO3--under high-pressure (6 GPa) and high-temperature (1500 K) conditions and show that the structural and magnetic properties are distinct from those of all other AMnO3 manganites. The crystal structure of TlMnO3 is solved and refined using single-crystal X-ray diffraction data. We obtain a triclinically distorted structure with space group P1̅ (No. 2), Z = 4, and lattice parameters a = 5.4248(2) Å, b = 7.9403(2) Å, c = 5.28650(10) Å, α = 87.8200(10)°, ß = 86.9440(10)°, and γ = 89.3130(10)° at 293 K. There are four crystallographic Mn sites in TlMnO3 forming two groups based on the degree of their Jahn-Teller distortions. Physical properties of insulating TlMnO3 are investigated with Mössbauer spectroscopy and resistivity, specific heat, and magnetization measurements. The orbital ordering, which persists to the decomposition temperature of 820 K, suggests A-type antiferromagnetic ordering with the ferromagnetic planes along the [-101] direction, consistent with the measured collinear antiferromagnetism below the Néel temperature of 92 K. Hybrid density functional calculations are consistent with the experimentally identified structure, insulating ground state, and suggested magnetism, and show that the low symmetry originates from the strongly Jahn-Teller distorted Mn(3+) ions combined with the strong covalency of the Tl(3+)-O bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...